APPLICATION OF NEURAL NETWORK TECHNOLOGIES FOR ENHANCING THE INFORMATIVENESS OF MEDICAL IMAGES
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.2.68Keywords:
intrascopic diagnostics, dental images, artificial neural networks, U-Net, GAN, medical image processing, image quality enhancement, digital signal processing, medical image informativeness, computer vision in medicineAbstract
The paper considers modern approaches to the use of artificial neural networks for improving the quality and informativeness of medical images in intrascopic diagnostic systems. In particular, a method and tool are presented for enhancing the quality of dental intrascopic images based on the integration of classical digital processing algorithms and deep neural networks. Special attention is paid to the analysis of convolutional neural networks (CNN), the U-Net architecture, and generative adversarial networks (GAN). An overview of the advantages and limitations of their application in medical tasks is provided. The relevance of the study is determined by the need for more accurate visualization of fine dental and oral tissue structures, which is critically important for the early diagnosis of dental diseases. The proposed approach consists of three key stages: preliminary image preprocessing (noise reduction and brightness normalization), data reconstruction using the U-Net architecture, and evaluation of the results through objective metrics (PSNR, SSIM) as well as subjective expert assessments by dentists. The results of prototype modeling of the neural network method aimed at noise reduction and image contrast enhancement are presented. Experimental studies demonstrated that the proposed method increases PSNR by 15–20 % and improves SSIM by an average of 0.1–0.15 compared to classical filtering methods. The obtained results confirm the effectiveness of the combined approach for processing dental intrascopic images. The method allows preserving fine anatomical details, reducing the influence of noise and artifacts, and increasing image informativeness, which in turn creates prerequisites for more accurate clinical diagnosis and decision support in dental practice.
References
Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2015. Vol. 9351. P. 234–241. DOI: 10.1007/978-3-319-24574-4_28
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative Adversarial Nets // Advances in Neural Information Processing Systems. 2014. Vol. 27. P. 2672–2680.
Litjens G., Kooi T., Bejnordi B. E., Setio A. A. A., Ciompi F., Ghafoorian M., van der Laak J. A. W. M., van Ginneken B., Sánchez C. I. A survey on deep learning in medical image analysis // Medical Image Analysis. 2017. Vol. 42. P. 60–88. DOI: 10.1016/j.media.2017.07.005
Shen D., Wu G., Suk H. I. Deep Learning in Medical Image Analysis // Annual Review of Biomedical Engineering. 2017. Vol. 19. P. 221–248. DOI: 10.1146/annurev-bioeng-071516-044442
Lundervold A. S., Lundervold A. An overview of deep learning in medical imaging focusing on MRI // Zeitschrift für Medizinische Physik. 2019. Vol. 29(2). P. 102–127. DOI: 10.1016/j.zemedi.2018.11.002
Іваненко С. В., Коваленко О. П. Методи цифрової обробки медичних зображень : навч. посібник. Київ : КНУ ім. Т. Шевченка, 2020. 212 с.
Петренко В. М., Руденко І. Ю. Використання глибинних нейронних мереж для підвищення якості медичних зображень // Вісник ХНТУ. 2021. № 2. С. 45–52.
Litvinova T., Marchenko A., Klymenko V. Application of convolutional neural networks for dental image classification // Ukrainian Journal of Radiology. 2022. Vol. 30(3). P. 87–95. DOI: 10.32718/ujr202230308
Zhang Y., Jiang J., Chen D., Lv S., Yang Y. Denoising medical images using generative adversarial networks // Biomedical Signal Processing and Control. 2021. Vol. 68. P. 102595. DOI: 10.1016/j.bspc.2021.1025951
Xu Y., Hosny A., Zeleznik R., Parmar C., Coroller T. P., Franco I., Mak R. H., Aerts H. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging // Clinical Cancer Research. 2019. Vol. 25(11). P. 3266–3275. DOI: 10.1158/1078-0432.CCR-18-2495







