REGULARIZATION AND FACTORIZATION OF LAURENT POLYNOMIAL MATRICES

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2023.1.4

Keywords:

regular Laurent polynomial matrix, the upper and lower degrees of the Laurent polynomial matrix, regularization and factorization of the Laurent polynomial matrix, Smith normal form, matrix values on the system of roots of diagonal elements, matrix equation

Abstract

In recent decades, the Laurent polynomial matrices and their factorizations have many potential applications in the fields of control and automatic control systems, theory of finite-state controlled systems, theory of image reproduction, and theory of data transmission devices. These matrices are used to describe the convolutional mixing process that occurs, for example, when a set of signals arrives at a sensor array over multiple paths. The study of factorizations of Laurent polynomial matrices is relevant and is used in multi-channel signal processing. Effective algebraic algorithms, which are based on elementary transformations of Laurent polynomial matrices and their factorizations, allow a complete analysis of system dynamics. Many problems in the field of digital signal processing and communication can also be transformed into algebraic problems of polynomial Laurent rings, and they can be solved using existing algebraic methods. The article considers the problem of regularization of the Laurent polynomial matrices and obtains the necessary and sufficient conditions for the regularization of such matrices. This result is used to study the factorization of polynomial matrices over the Laurent ring. A criterion for the factorization of polynomial matrices over the Laurent ring with a regular factor with a predetermined Smith form is obtained. A method of constructing matrix regularization and factorization over the Laurent ring of polynomials is proposed, and examples of matrix regularization and factorization over the Laurent ring are given.

References

Казімірський П.С. Розклад матричних многочленів на множники. Львів: Інститут прикл. проблем механіки і матем. імені Я.С. Підстригача НАН України, 2015. 285 с.

Казімірський П.С., Петричкович В.М. Про еквівалентність поліноміальних матриць // Теорет. та прикл. питання алгебри і диференц. рівнянь. 1977. С. 61 – 66.

Петричкович В.М. О полускалярной эквивалентности и нормальной форме Смита многочленных матриць// Мат. методи та фіз.-мех. поля. 1987. 25. С. 13–16.

Petrychkovych V. Generalized equivalence of pair of matrices // Linear Multilinear Algebra, 2000. 48. P. 179–188.

Petrychkovych V. Standart form of pair of matrices with respect to generalized equivalence // Visnyk Lviv. Univ. 2003. 61. P. 153–160.

Kuchma М.I., Gatalevych A.I. Triangular form of Laurent polynomial matrices and their factorization // Mathematical modelling and computing, 2022. 9. No. 1, P. 119-129.

Кучма М.І. Симетрична еквівалентність матричних многочленів і виділення спільного унітального дільника із матричних многочленів // Укр. матем. журн. 2001. Т. 53. № 2. С. 211-219.

Dias da Silva J.A., Laffey T. J. On simultaneous similarity of matrices and related questions// Linear Algebra Appl. 1999, 291. P. 167–184.

Казимирський П. С., Щедрик В. П. О решениях матричных многочленных односторонних уравнений // Доклади АН СССР. 1989. 304, № 2. с. 271–274.

Shchedryk V. Arithmetic of matrices over rings. Kyiv, Akademperiodyka, 2021. 278 p.

Зеліско В.Р. Єдиність унітальних дільників матричних многочленів // Вісник львівськ. унів-ту. 1988. 30. С. 36–38.

Fornasini E., Valcher M.-E. nD-Polynomial Matrices with Applications to Multidimensional Signal Analysis // Multidimensional Systems and Signal Processing. 1997. 8(4). P. 387–408.

Foster J.A., McWhirter J.G., Davies M.R., Chambers J.A. An algorithm for calculating the QR and singular value decompositions of polynomial matrices // IEEE Trans. Signal Process. 2010. 58(3). P. 1263–1274.

Park H. Symbolic computation and signal processing, Journal of Symbolic Computation // 2004. 37. P. 209–226.

Kaczorek T. Polynomial and Rational Matrices: Applications in Dynamical System. Theory, Commun. and Control Eng. Ser. London (UK). 2007.

Published

2023-06-28