DECISION SUPPORT SYSTEMS AS EFFICIENT TOOLS FOR THE IMPLEMENTING OF CRUISE AND LINE SHIPPING MANAGEMENT

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2023.1.10

Keywords:

Passenger (sea and river) transportation, decision support systems (DSS), databases, databases, models, competitiveness, operational leverage

Abstract

The article examines the patterns of development of cruise shipping. The strategy for the development of the local segment of the cruise business is revealed. The toolkit for effective management of cruise and liner shipping operations is substantiated – DECISION SUPPORT SYSTEM information systems. Market development and increased competition in the economy forces shipping companies to look for competitive advantages. Such advantages can be provided by either internal production efficiency or the best market orientation against competitors. Let us emphasize that production efficiency is ensured by SPPR management systems. The purpose of the article is to provide a toolkit of SPPR to improve the efficiency of the passenger fleet (cruise and liner). Ensuring the formalization of unstructured solutions by direct usersmanagers in the process of analytical modeling of passenger shipping operations using the provided set of technologies. This process is aimed at qualitatively improving the operation of cruise shipping. A characteristic difference and an important component of this process is the CSPR, which uses databases and decision support models. The purpose of the planned SPPR is primarily to provide technology for the organization of information formation, as well as system support for decision-making as a whole. The technique of clustering cruises according to certain characteristics and selection of the appropriate class of vessels is being implemented, which allows for an effective targeted marketing policy of the organization of passenger transportation. It has been proven that operating leverage is an indicator that can be used to measure the rate of change in current profit based on the rate of change in transportation volumes. The technology for forecasting the performance indicators of the project is provided, which increases the possibilities of developing the potential of the cruise shipping market.

References

Онищенко С.П. Основные этапы моделирования стратегических планов маркетинговой деятельности судоходных компаний // Розвиток методів управління та господарювання на транспорті. Збірник наукових праць. No 4. Одеса: ОДМУ, 1999. С. 195-203.

Логунова Н.А. Мировой рынок круизной индустрии: особенности формирования и перспективы развития. Вісник Бердянського університету менеджменту і бізнесу. 2013. No 2 (22). С. 29-34.

Мельник І.Л. Інноваційні зміни на ринку круїзного туризму. Бізнес Інформ. 2014. No 12. С. 313-319.

Селиванов В.В. Международный морской туризм: Основы организации и методология: учебное пособие. Симферополь. ИТ «Ариал», 2015. С. 296.

Лесник А.С. Управление портом в условиях конкуренции // Судоходство. 2000. No 9. С. 31-32.

Boehe D. M., & Cruz L. B. Corporate social responsibility, product differentiation strategy and export performance. Journal of Business Ethics, 91, 325-346. http://dx.doi.org/10.1007/s10551-010-0613-z. 2010.

Hosany S., & Witham M. Dimensions of Cruisers’ Experiences, Satisfaction and Intention to Recommend. Journal of Travel Research, 49(3), 351-364. http://dx.doi.org/10.1177/0047287509346859. 2010.

Krugman P. R. Scale economies, product differentiation and the pattern of trade. American Economic Review, 70, 950-959.2012.

Holcombe R. G. Product Differentiation and Economic Progress. The Quarterly Journal of Austrian Economics, 12(1), 17-35.2009.

Шибаев А. Г., Сильванская Г. Н. Пассажирские перевозки: учеб. пособие / А. Г. Шибаев, Г. Н. Сильванская : под ред. д.т.н., проф. А. Г. Шибаев. Одесса: Феникс,2013. С. 336. УДК656.614.2(076.8)ББК 39.48я73. IBSN 978-966-438-593-7.

White R. E., & Hamermesh R. G. Toward a model of business unit performance: An integrative approach. Academy of Management Review, 6, 213-223.1986.

Gulliksen V. The cruise industry. Society, 45, 342-344. http://dx.doi.org/10.1007/s12115-008-9103-7.2008.

Head K., & Reis J. Increasing returns versus national product differentiation as an explanation for the pattern of U.S. Canada trade. American Economic Review, 91(4), 858-876. http://dx.doi.org/10.1257/aer.91.4.858. 2001.

Garrow L., Ferguson, M., Keskinocak P., & Swann J. Expert opinions: Current pricing and revenue management practice across U.S. industries. Journal of Revenue and Pricing Management, 5(3) 237–247.http://dx.doi.org/10.1057/palgrave.rpm.5160042. 2006.

Farakhutdinov Sh. F., Bushuyev A.S. Processing and Analysis of Sociological Research Data in the SPSS 17.0 Package. Course of lectures : tutorial / Sh. F. Farakhutdinov, A. S. Bushuyev. – Tyumen : TyumSOGU, 220 p.ISBN 978-5-9961-0414-7.2011.

Устинова Г. М. Информационные системы менеджмента. Основные аналитические технологии в поддержке принятия решений. Москва:DIASOFT,2000.С. 364. SBN: 5-93772-001-6.

Сільванська Г.Н., Карп Г.В. Кластерній аналіз як інструмент сегментації круїзних ліній. Вчені записки Таврійського національного університетам імені В.И Вернадського. Kиїв. 2021р Серія Технічні Науки. Том 32(71). № 6. С. 239.

Published

2023-06-28