STUDY OF THERMOCHEMICAL CONVERSION OF ORGANIC SUBSTANCES USING AN EQUILIBRIUM MODEL
DOI:
https://doi.org/10.35546/kntu2078-4481.2023.2.1Keywords:
thermochemical conversion, organic matter, equilibrium model, oxygen blowing, combined gas generatorAbstract
The processes of thermal conversion of wood in a combined layer gas generator are considered. The processes of gas generation and pyrolysis are distinguished. The generally accepted approach provides the description of such processes by means of different models. The mentioned processes do not have sharp boundaries and when external influences change can smoothly change one into the other. The problem arises of describing the process at such an interface. Different models at the transition boundary of one process may define different compositions of reaction products for the same process parameters. A model based on equilibrium chemical reactions uniformly describing pyrolysis and gasification processes is proposed. To demonstrate its capabilities while minimizing computational costs, only the case of oxygen blowing with wood of different moisture content is considered. The proposed model allows taking into account both the formation of the gaseous phase of the thermodestruction products of the feedstock and the condensed phase in the form of a charcoal residue (charcoal). The calculation results are compared with the experimental data of various authors. One of the peculiarities of the experimental data given in the literature is the wide scatter of their values for the same initial conditions. The proposed model allows us to build a platform for their uniform explanation. Increasing the list of possible chemical reactions in the model will make it possible to study combustion, pyrolysis and gasification processes under a unified approach. The possibility of taking into account the presence of a condensed phase in reaction products and the expansion of the model will make it possible to: investigate the process of thermal degradation of various organic substances, including household waste, use different oxidizing agents, take into account different ways of introducing additional external energy. The consequence of extending the model will be an increase in the number of equations in the system of algebraic non-linear equations and, consequently, some complication of its solution.
References
Hanchate N. Biomass gasification using dual fluidized bed gasification systems: A review [Text] / N. Hanchate, S. Ramani, C.S. Mathpati, V. H. Dalvi //, Journal of Cleaner Production, Volume 280, Part 1, 2021, 123148, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.123148
Самилін О.О. Сучасні енергоефективні технології використання відходів біомаси в сільському, лісовому та комунальному господарствах [Текст] / О.О. Самилін, Н.М. Цивенкова, А.А. Голубенко// Вісник ЖНАЕУ № 1, 2009, с. 269–278.
Ткаченко С.Й. Перспективні напрямки використання біомаси як джерела енергії [Текст] / С.Й. Ткаченко, Л.А. Боднар, А.О. Юзюк // Вісник Вінницького політехнічного інституту. 2011. № 2, с. 68–73. https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/1396/1396
Kurkela E. Review of Finnish biomass gasification technologies [Text] / E. Kurkela // 2023. https://www.researchgate.net/publication/30482338_Review_of_Finnish_biomass_gasification_technologies
Sarkar S. Biofuels and biochemicals production from forest biomass in Western Canada [Text] / S. Sarkar, A. Kumar, A. Sultana // Energy. Volume 36, Issue 10, 2011, Pages 6251–6262. https://doi.org/10.1016/j.energy.2011.07.024
Сайт компании CHOREN. https://www.choren.com/en/technology/choren-coal-gasification/
Брунеткін В.О. Комбінований шаровий газогенератор [Текст] / В.О. Брунеткін, В.О. Давидов // The 22th International scientific and practical conference “Modern theories and improvement of world methods” (June 06–09, 2023) Helsinki, Finland. International Science Group. 2023. p. 440-443. ISBN – 979-8-88992-687-0. https://doi.org/10.46299/ISG.2023.1.22
Брунеткин А.И. Метод определения состава горючих газов при их сжигании [Текст] / А.И. Брунеткин, М.В. Максимов // Науковий вісник Національного гірничого університету. 2015. № 5. С. 83–90. http://nbuv.gov.ua/UJRN/Nvngu_2015_5_16
Cerone N. Gasification of Wood and Torrefied Wood with Air, Oxygen, and Steam in a Fixed-Bed Pilot Plant [Text] / N. Cerone, F. Zimbardi, A. Villone, N. Strjiugas, E. G. Kiyikci // Energy Fuels 2016, 30, 4034–4043. https://doi.org/10.1021/acs.energyfuels.6b00126
Weiland F. Pressurized Oxygen Blown Entrained-Flow Gasification of Wood Powder [Text] / F. Weiland, H. Hedman, M. Marklund, H. Wiinikka, O. Öhrman, R. Gebart // Energy & Fuels, 2013, 27 (2), 932–941, https://doi.org/10.1021/ef301803s
Bureika G. Alternative Carbonless Fuels for Internal Combustion Engines of Vehicles. [Text] / G. Bureika, J. Matijošius, A. Rimkus // Ecology in Transport: Problems and Solutions. Lecture Notes in Networks and Systems, vol 124. 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-42323-0_1
Couto N. Influence of the Biomass Gasification Processes on the Final Composition of Syngas [Text] / N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane // Energy Procedia, Volume 36, 2013, P. 596-606. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2013.07.068
Lyons Cerón A. Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas [Text] / A. Lyons Cerón, A. Konist, H. Lees, O. Järvik // Special Issue Selected Papers from the 9th European Conference on Renewable Energy Systems (ECRES2021), Sustainability 2021, 13(21), 11763 https://doi.org/10.3390/su132111763