JUSTIFICATION OF THE TEMPERATURE DEVIATION OF THE HEAT CARRIER AT THE OUTLET OF THE WELL OF THE GEOTHERMAL HEAT PUMP SYSTEM AS A FEATURE OF THE HYDROGEOTHERMAL REGIME OF THE EARTH'S OUTER SHELL

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2023.3.2

Keywords:

renewable energy sources, geothermal energy, hydrothermal energy aquifer, neutral layer, heat pump, water intake, soil heat, groundwater

Abstract

The paper presents the results of theoretical and experimental research on the justification of the location of the wells of the hydrothermal heat pump system for stable and efficient production of low-potential geothermal energy. It has been proven that the most effective are heat pump systems that use the heat of the soil or groundwater and have heat exchangers and wells installed at a depth below the neutral layer. Endogenous and exogenous factors affecting the depth of the neutral layer are given. It was determined that exogenous factors compared to endogenous factors have a greater influence on the formation of the thermal regime of the hydrosphere. The general regularities of changes in the thermal regime of the hydrosphere under the influence of exogenous factors are given. It is substantiated that, depending on the hydrogeological conditions, the zones where the wells of the geothermal pump system are located, below the theoretically determined depth of the neutral layer, zones with a significant deviation of the soil temperature may re-form. The criteria determining the type of hydrogeothermal regime are determined and the classification of types of hydrogeothermal regime is given. An experimental heat pump system developed and constructed at the Institute of Renewable Energy of the National Academy of Sciences of Ukraine is presented, which consists of a heat pump and two wells through which water circulates from the underground horizon to the heat pump. Temperature sensors are installed in the well and on the surface. Research methods have been developed. The results of experimental studies are presented, based on which it was established that due to the special geomorphological conditions of the location of the system, the water temperature in the aquifer (at a depth of 50 m) depends on the air temperature and the intensity of solar insolation during the day. It has been proven that there is a hydraulic connection between the aquifer opened by the wells and the ponds located in a row in the beams, and the small distance between them and the special topography of the area affect the change in the temperature of the water in the well 50 m deep. The main regularities of the effect of surface harmonic temperature changes on the temperature regime of the Earth's outer shell are outlined. The classification is given, which takes into account all possible main types of hydrogeothermal regime. The results obtained during the research have important scientific and applied significance in the design of geothermal and hydrothermal heat pump systems. In addition, further research into the possibilities and effectiveness of using the aquifer as a natural heat accumulator for stable energy generation from renewable sources regardless of climatic conditions and seasons is promising.

References

Suveizdis P., Rasteniene V., Zinevicius F. (2000) Geothermal potential of lithuania and outlook for its utilization. Proceedings World Geothermal Congress 2000. Kyushu : Tohoku : Japan, May 28 – June 10. 2000. pp. 1356-1367.

Zhu K, Blum P., Ferguson G., Balke K., Bayer P. (2010) The geothermal potential of urban heat islands. Environ. Res. no. 5, pp. 1-6. http://dx.doi.org/10.1088/1748-9326/6/1/019501

Oliinyk H. (2022) Study of the efficiency of using a heat pump in the heat supply system of a private house. Scientific Journal of the Ternopil National Technical University, vol. 107, no 3, pp. 14-20. https://doi.org/10.33108/visnyk_tntu2022.03

Олійниченко В.Г., Марченко М.В., Кушнір І.О. (2017) Ефективні напрямки інвестування в галузі геотермальної енергетики. Відновлювана енергетика, № 3, С. 73-79.

Морозов Ю.П., Чалаєв Д.М., Ніколаєвська Н.В., Добровольський М.П. (2019) Оцінка ефективності використання теплового потенціалу довкілля та верхніх шарів Землі України. Відновлювана енергетика, № 4(63), C. 80-88. https://doi.org/10.36296/1819-8058.2020.4(63).80-88

А. А. Барило. (2020) Аналіз гідрогеологічних і геотермічних характеристик геотермальних об’єктів України. Відновлювана енергетика, № 1(60), С. 74–84. https://doi.org/10.36296/1819-8058.2020.1(60).74-85

Малкін Е.С., Кулінко Є.О. (2014) Перспективи та аспекти застосування систем теплохолодопостачання, які використовують приповерхневі шари води в якості теплового акумулятора. Вентиляція, освітлення та теплогазопостачання, № 17, С. 63–69.

Zurian O.V., Barilo A.А. (2022 ) Impact of the natural temperature regime of the upper layers of earth on efficiency of a hydrothermal heat pump system. Journal of Geology, Geography and Geoecology, vol 31, no 3, pp. 575-584. https://doi.org/10.15421/112254

Зур’ян О.В. (2023) Вплив потоку підземних вод на геотермальний градієнт. Вісник Кременчуцького національного університету імені Михайла Остроградського, № 2(139), С. 153-161. https://doi.org/10.32782/1995-0519.2023.2.19

Зур’ян О.В. (2021) Експериментальні дослідження теплового режиму гідротермальної теплонасосної системи. Відновлювана енергетика, № 1 (56), С. 10-19. https://doi.org/10.36296/1819-8058.2021.4(67).77-89

Фролов Н.М. (1991) Основи гідрогеотермії. Під редакцією В.І. Лялько. M: Надра. 1991. 335 с.

Морозов Ю.П., Чалаєв Д.М., Олійніченко В.Г., Величко В.В. (2019) Експериментальне дослідження добового акумулювання холоду шляхом використання води підземних горизонтів м. Києва. Відновлювана енергетика, № 3, С. 67–77. https://doi.org/10.36296/1819-058.2019.3(58).67-77

Зур’ян О.В. (2023) Врахування динаміки змін температури підземних вод на ділянках берегових водозаборів гідротермальних теплонасосних систем. Вісник Херсонського національного технічного університету, № 2 (85), С. 20-28.

Published

2023-11-13