INTENSIFICATION OF ANTHOCYANIN EXTRACTION BY PULSE ELECTRIC DISCHARGE

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2023.3.9

Keywords:

extraction, anthocyanins, grape pomace, electrical impulse discharge

Abstract

Physical methods for intensifying the extraction process are used to accelerate mass transfer in the "solid-liquid" system in order to more complete and faster extraction of dyes. The use of electric pulsed discharges, under the influence of which there is an intensive mixing of the mixture of plant materials and extractant, thinning or complete disappearance of the diffusion wall layer of the cell, and an increase in the convective diffusion coefficient, is promising. The article is devoted to the study of the process of extraction of dyes from frozen pomace of red grapes of the Vitis Vierul variety. The improvement of extraction was carried out due to the pretreatment of plant materials with a pulsed electric discharge. The degree of anthocyanins extraction was calculated according to the pH-differential method with measurement of the optical density of the obtained extracts on a Spekol 11 device. As a comparative experiment, we used the extraction of coloring matter from grape pomace with an aqueous solution of 1% by weight hydrochloric acid at pH 2.0 and a temperature of 60°C in several stages until the exhaustion of raw materials to determine the maximum possible amount of extracted anthocyanins. The optimal conditions for the process were chosen: extraction module, duration and number of stages. It was established that the optimal processing time for a raw material:extractant ratio of 1:100 is 30 s, for 3:100 and 5:100 – 60 s. When using a one-stage extraction (hydromodule 20 duration 30 s) with an aqueous solution with the addition of citric acid, the yield of anthocyanins is 51%, in three stages – 77%. The destruction of anthocyanins during storage of extracts at temperatures of 3 and 20ºC for three and six days and the contamination of hoods with products of erosion of metal electrodes were investigated. It was established that when extracts are stored in a dark room at 3ºС, anthocyanins are destroyed by 18% in 6 days, and by 57% at 20ºС.

References

Ластухін Ю.О. Харчові добавки. Е-коди. Будова. Одержання. Властивості. Львів: Центр Європи. 2009. 836 с.

Салєба Л.В., Сарібєкова Д.Г. Удосконалення процесу екстрагування антоціанів з використанням ферментних комплексів. Вісник Хмельницького національного університету. № 1(293). 2021. С. 222-226.

Ніколенко М.В., Єльчанінова К.О., Карабут В.О., Вашкевич О.Ю. Одержання харчових барвників класу антоціанів з виноградних вичавок: механізм процесу екстракції. Voprosy khimii i khimicheskoi tekhnologii. No. 6. 2020. Р. 134-141.

Saleba L., Saribekova D., Kunyk O., Lazzara G. Influence of chemical structure of alcohols on extraction and stability of anthocyanins. Ukrainian Food Journal. V. 11. Issue 2. 2022. Р. 280-290.

Kulazynski M., Stolarski M., Faltynowicz H., Narowska B., Swiatek L., Lukaszewicz M., Supercritical fluid extraction of vegetable materials. Chemistry & Chemical Technology. Vol. 10. No. 4(s). 2016. P.637-643.

Bonfigli M., Godoy E., Reinheimer M.A., Scenna N.J. Comparison between conventional and ultrasoundassisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J. Food Eng. Vol.207. 2017. P.56-72.

González M., Cavallo L., Budelli E., Barrios S., Pérez N., Lema P., Heinzen H. Ultrasonic assisted extraction of Achyrocline satureioides Lam, D.C, (marcela) in aqueous media improves extraction yield and enhances selective bioactive extraction. Sustainable Chemistry and Pharmacy. vol. 29. 2022. 100819.

Чуєшов В.І., Гладух Є.В., Сайко І.В. та ін. Технологія ліків промислового виробництва. Х. : НФаУ: Оригінал, 2012. Ч. 1. 704 с.

Асаулюк Т.С. Розробка технологій біління вовняного волокна з використанням електророзрядної нелінійної об’ємної кавітації. дис. канд. тех. наук: 05.18.19 – Херсон, 2016. 152 с.

Семешко О.Я. Сарібєкова Ю.Г., Семенченко О.А. Дослідження впливу електророзрядної нелінійної об’ємної кавітації на зміну властивостей води. Вісник Хмельницького національного університету. № 1. 2012. С. 69-74.

Wrolstad R.E., Giusti M.M. 2001. Unit F1.2: anthocyanins. Characterization and measurement with UV-visible spectroscopy. In: Wrolstad, RE, editor. Current protocols in food analytical chemistry. New York: John Wiley & Sons. p. F1.2.1– 1.2.13.

Downloads

Published

2023-11-13

Issue

Section

THE TECHNOLOGY OF LIGHT AND FOOD INDUSTRY