SYNTHESIS OF THE STRUCTURAL DIAGRAM OF THE OIL HEATER AS AN OBJECT OF AUTOMATIC CONTROL
DOI:
https://doi.org/10.35546/kntu2078-4481.2023.4.5Keywords:
oil heaters, state space, linearization, transfer functions, dynamics of heat transfer, automatic control system.Abstract
In the oil and gas industry, oil (condensate) heaters have recently been used, in which, unlike direct heating with flue gases, uniform heating of the product is ensured, which prevents the appearance of abnormally hot areas, which can be the cause of emergency situations – pipe ruptures, oil leaks, explosions. To maintain the technological process – the heating of the working product – within the given limits, a local system of automatic temperature regulation of the product at the outlet of the heater is used. The disadvantage of such a system is that external disturbances acting on the object are taken into account by the system using negative feedback. Since the object has significant inertia, indirect consideration by the system of external influences leads to a significant deterioration in the quality of the control process. The creation of a system for automatic control of the process of heating the working product, with increased indicators of the quality of the control process, is possible only on the basis of a mathematical model that describes the dynamics of heat transfer from heat pipes through an intermediate coolant to the working environment. In the work, the mathematical model of the heater is presented in the state space, which has a vector form, which made it possible to simplify both the process of linearization and the process of excluding intermediate variables. The analysis of the obtained model showed that the dynamics of the oil (condensate) heater is characterized by nine transfer functions. The developed structural diagram of the heater will be the basis for the development of an automatic control system for the oil path heater with improved control quality indicators.
References
Barreto C.V, Pires Luis F. G., Sarmento R. C. Тransient simulation of natural gas citygates stations. Proceedings of the 8th International Pipeline Conference IPC2010 September 27–October 1, 2010, Calgary, Alberta, Canada. URL: http://www.simdut.com.br/Trabalhos/IPC2010-31567.pdf.
Rashidmardani A., Hamzei M. Effect of Various Parameters on Indirect Fired Water Bath Heaters’ Efficiency to Reduce Energy Losses. International Journal of Science and Engineering Investigations, 2013. Vol. 2, issue 12. P. 17–25.
Azizi S. H., Rashidmardani A., Andalibi M. R. Study of Preheating Natural Gas in Gas Pressure Reduction Station by the Flue Gas of Indirect Water Bath Heater. International Journal of Science and Engineering Investigations, 2014. Vol. 3, issue 27. P. 17–22. URL: http://www.ijsei.com/papers/ijsei-32714-03.pdf ISSN: 2251-8843.
Khanmohammadi S., Shahsavar A. Thermodynamic assessment and proposal of new configurations of an indirect water bath heater for a City Gate Station (a case study). Energy Equip. Sys, 2020. Vol. 8. No. 4. Dec. 2020. P. 349–365. URL: http://www.energyequipsys.com/article_241292_f1fc67b732305a7108c69cf11f6cab0d.pdf.
Riahi М., Yazdirad B., Jadidi M., Berenjkar F., Khoshnevisan S., Jamali M., Safary M. Optimization of Combustion Efficiency in Indirect Water Bath Heaters of Ardabil City Gate Stations. MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11–15, 2011. URL: https://www.researchgate.net/publication/272498858_Optimization_of_Combustion_Efficiency_in_Indirect_Water_Bath_Heaters_of_Ardabil_City_Gate_Stations.
Розробка та експлуатація нафтових та нафтогазових родовищ: навчальний посібник / Фик М. І., Хріпко О. І., Раєвський Я. О., Варавіна О. П. Харків: «ХПІ», 2019. 149 с.
Rastegar S., Kargarsharifabad H., Doost A.K., Rahbar N. Developing a Model for Predicting the Outlet Gas Temperature of Natural Gas Pressure Reduction Stations to Reduce Energy Loss. Journal of Heat and Mass Transfer Research 7, 2020. P. 143–154. URL : https://jhmtr.semnan.ac.ir/article_4469_339ae1dfdccab8b200ef6dbcf8e8abfe.pdf.
Горбійчук М. І., Когутяк М. І., Гарасимів В. М. Математична модель підігрівника з проміжним теплоносієм. Методи та прилади контролю якості. Івано-Франківськ: ІФНТУНГ, 2021. № 2(47). С. 83–96.
Горбійчук М. І., Василенчук М. З., Когутяк М. І. Синтез лінеаризованих математичних моделей нагрівника з проміжним теплоносієм. Міжнародний науково-технічний журнал «Вимірювальна та обчислювальна техніка в технологічних процесах», 2023. Вип. 3. С. 144–153.