AN INTELLIGENT PRODUCTION PLANNING SUPPORT SYSTEM BETWEEN BAKERY ENTERPRISES
DOI:
https://doi.org/10.35546/kntu2078-4481.2022.2.8Keywords:
artificial intelligence, decision support system, intelligent system, mathematical model, production planning, bakery enterpriseAbstract
The paper proposes an intelligent system for production planning support between bakery enterprises. Considering the specifics of bakery enterprises, a mathematical model of profit is proposed. This model takes into account logistical features when distributing orders among several enterprises in this industry. The paper considers the complex task of taking into account the necessary raw materials supply to corresponding factories, as well as the supply of finished products to customers. The proposed mathematical model allows the creation of an order fulfillment plan that takes into account all operations of the technological process in the manufacturing of products. It also allows adjustment and evaluation of the order fulfillment efficiency depending on the objective and subjective advantages provided by the decision maker and allows both consideration and exclusion of certain partial criteria depending on a specific situation. The model makes it possible to estimate and build an operational-calendar order fulfillment plan. The paper analyzes several methods and approaches that are included in the intelligent support system for planning the manufacturing of products between bakery enterprises that belong to the same company or have a cooperation agreement concluded between them, which will make it possible to derive the entire management process to a new level. The proposed information system structure makes it possible to combine the use of modified algorithms and methods based on combining algorithms, which were also analyzed in the work, as well as some classical approaches. The system provides a possibility to select a set of algorithms and methods, which increases the range of applications. The proposed system quickly forms an operational calendar plan for order fulfillment with cost minimization aimed at maximizing profit; enables reduction of logistics costs, which ensures obtaining higher quality products with minimal waiting time; allows quick adjustment of the existing calendar plan of orders, which makes it possible to respond to orders in real-time and ensure optimal use of technological equipment; significantly increases the efficiency of using raw materials, and also ensures the minimization of costs for their storage; ensures a quick response in case of negative and extraordinary situations by making appropriate changes to the current order fulfillment plan.
References
Новойтенко І. В . Стан та основні тренди розвитку хлібопекарської промисловості України / І. В . Новойтенко, В. В . Малиновський // Ефективна економіка. – 2020. – № 11. – 7 с. DOI: 10.32702/2307-2105-2020.11.52.
Corrado M . Impact of storage on starch digestibility and texture of a high-amylose wheat bread / M. Corrado, P. Zafeiriou, J. H. Ahn-Jarvis // Food Hydrocolloids. – 2023. – Vol. 135. – 108139. – 9 p. DOI: 10.1016/j.foodhyd.2022.108139.
V orkut T. The model to optimize deliveries of perishable food products in supply chains / T. V orkut, L. V olynets, O. Bilonog, O. Sopotsko, I. Levchenko // East.-Eur. J. Enterp. Technol. – 2019. – Vol. 5. – Pp. 43 ̶ 50.
M arkova S. Asymptotic methods in optimization of multi-item inventory management model / S. M arkova, L. Horoshkova, I. Khlobystov, V. V olkov, O. Holovan, A. Golub, O. Oliynyk // CEUR Workshop Proceedings. – 2020. – Vol. 2713. – Pp. 393–414.
Bikulov D. Optimization of inventory management models with variable input parameters by perturbation methods / D. Bikulov, O. Holovan, O. Oliynyk, K. Shupchynska, S. M arkova, A. Chka, E. M akazan, K. Sukhareva, O. Kryvenko // East.-Eur. J. Enterp. Technol. – 2020. – Vol. 3/3(105). – Pр. 6–15.
Sanni S. An economic order quantity model with reverse logistics program / S. Sanni, Z. Jovanoski, H. S. Sidhu // Operations Research Perspectives. – 2020. – Vol. 7. – 100133. – 8 p. DOI: 10.1016/j.orp.2019.100133.
Rodchenko L. Optimization of Innovation Projects According To Criteria of Time and Resource Constraints / L. Rodchenko, O. Goncharenko, O. Koval, I. Tarasov, H. Nemchenko, T. Tkachuk // International Journal of Recent Technology and Engineering. – 2019. – vol. 8. – pp. 1431–1434.
Немченко В . Управління харчовими підприємствами у контексті забезпечення якості харчування / Немченко В . В ., Немченко Г. В . // European journal of economics and management. – 2019. – Vol. 5. – Iss. 3. – Pp. 54–60.
Irtysheva I. Types, purposes and formation process of the program of changes in logistics system / I. Irtysheva, S. M inakova // Actual Problems of Economics. – 2015. – Vol. 3(165). – Pp. 155–160.
V ijayashree M . A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time / M. V ijayashree, R. Uthayakumar // Journal of Industrial Engineering International. – 2017. – Vol. 13. – Pp. 393–416.
Hrybkov S. Development of information technology for planning order fulfillment at a food enterprise / S. Hrybkov, O. Kharkianen, V. Ovcharuk, I. Ovcharuk // East.-Eur. J. Enterp. Technol. – 2020. – Vol. 3(103). – Pp. 62–73.
Nasir D. S. M . Comparison of Linear and Integer Linear Programming for the Profit Optimization in Bakery Production: A Case Study at Temptlicious Enterprise / D. S. M . Nasir, N. N. Hamdan, N. H. Shafii, N. A. M . Nor // Journal of Computing Research and Innovation. – 2022. – Vol. 7. – No. 2. – Pp. 142–152. DOI: https://doi.org/10.24191/jcrinn.v7i2.297.
Zorpas A. A. Total quality management system (TQMS) in small winery and bakery in Cyprus. A case study / A. A. Zorpas, D. M . Pociovălişteanu, V. J. Inglezakis, I. V oukalli // Analele Universităţii Constantin Brâncuşi din Târgu Jiu : Seria Economie. – 2012. – Vol. 2. – No. 2. – Pp. 17–26.
Reyes R. J. R. Impacto de un sistema ERP en la productividad de las PYM E / R. J. R. Reyes, S. D. R. Lugo, J. B. V elándia // Tecnura. – Dec 2012. – vol. 16. – no. 34. – pp. 94–103.
Dey B. Forecasting ethanol demand in India to meet future blending targets: A comparison of ARIMA and various regression model / B. Dey, B. Roy, S. Datta, T. S. Ustun // Energy Reports. – Mar 2023. – Vol. 9. – Pp. 411–418.
Kumar T. J. An ordered precedence constrained flow shop scheduling problem with machine specific preventive maintenance / T. J. Kumar, M. Thangaraj // Journal of Project Management. – Jan 2023. – Vol. 8. – No. 1. – Pp. 45–56. DOI: 10.5267/j.jpm.2022.8.002.
M arta D. Simulations in planning logistics processes as a tool of decision-making in manufacturing companies // Production Engineering Archives. – Dec 2022. – Vol. 28. – No. 4. – Pp. 300–308. DOI: 10.30657/pea.2022.28.38.
Liu Z. Multiperiod competitive supply chain networks with inventorying and a transportation network equilibrium reformulation / Z. Liu, A. Nagurney // Optimization and Engineering. – 2012. – Vol. 13(3) . – Pp. 471–503. DOI: 10.1007/s11081-011-9170-2.
M usavi M . A multi-objective sustainable hub location-scheduling problem for perishable food supply chain / M. M usavi, A. Bozorgi-Amiri // Computers & Industrial Engineering, 2017. – Vol. 113. – Pp. 766–778. DOI: 10.1016/j.cie.2017.07.039.
Patak M . Demand planning specifics in food industry enterprises / M. Patak, V. V lckova // Business and Management, 2011. – Vol. 7. – Pp. 1168–1175. DOI: 0.3846/bm.2012.150.
Amorim P. Multi-objective integrated production and distribution planning of perishable products / P. Amorim, H. O. Günther, B. Almada-Lobo // International Journal of Production Economics. – 2012. – Vol. 138(1) . – Pp. 89–101. DOI: 10.1016/j.ijpe.2012.03.005.
Ahumada O. A tactical model for planning the production and distribution of fresh produce / O. Ahumada, J. R. V illalobos // Annals of Operations Research. – 2011. – Vol. 190(1). – Pp. 339–358. DOI: 10.1007/s10479-009-0614-4.
Stüve D. A systematic literature review of modelling approaches and implementation of enabling software for supply chain planning in the food industry / D. Stüve, R. M eer, M. S. A. Agha, M. L. Entrup // Production and Manufacturing Research: An Open Access Journal. – Dec 2022. – Vol. 10. – No. 1. – Pp. 470–493. DOI: 10.1080/21693277.2022.2091057.
Харченко Т. М. Особливості функціонування підприємства хлібопекарської галузі / Т. М. Харченко, А. В . В акуленко // Фінансово-економічний розвиток України в умовах трансформаційних перетворень: матер. міжнар. наук.- практ. конф. – Т.: Крок, 2019. – С. 58–59.
Hrybkov S. Weboriented
decision support system for planning agreements execution / S. Hrybkov, V. Litvinov, H. Oliinyk // East.-Eur. J. Enterp. Technol. – 2018. – Vol. 2(93) . – Pp. 13–24.
Hrybkov S. Hybrid expert system to model the ice cream recipes / S. Hrybkov, N. Breus, G. Polischuk // Ukrainian Journal of Food Science. – 2017. – Vol. 5(2). – Pp. 294–304.
Amazon. What is a data lake? [online]. – 2020. – URL: https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake.