PROCESSES OF DEGRADATION OF PNEUMATIC TIRE MATERIALS AND ENSURING THE RESISTANCE OF MECHANICAL PROPERTIES

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2023.4.22

Keywords:

hydraulic forging, hydrostatic extrusion, deformation, mould, modelling, strength, reliability, destruction.

Abstract

In this work, a model of the process of degradation of pneumatic tire materials is created during the accumulation of damage depending on chemical, thermal and thermomechanical aging. It is proposed to consider in detail the behavior of rubber-elastomers through the study of the phenomenon of resistance of materials to changes in the characteristics and mechanical properties of pneumatic tires. Tires are exposed to internal and external influences, which to a greater or lesser extent can cause limit states leading to degradation processes. During operation, the tire is subjected to a combined load from both a mechanical (static, dynamic) and a temperature point of view: precise heating in the sub-zones, general critical heating in the tire tread area, which intensifies in the tires during rupture. An aggressive environment (for example, the action of salts in winter) activates the corrosion process on the surface of the metal cord, which can lead to a decrease in the adhesion between the reinforced elements and the matrix, which causes negative changes in the properties of the materials and the tire as a whole. The causes of the formation of the main processes that accompany degradation require generalization and systematization, as well as detailed study. Considered external damaging factors of chemical diffusion (sea force, used oil). The surface morphology, mechanical and thermal properties of the composition, the effect of hydrothermal aging on the properties of the composition were revealed by studying the microstructure, thermal and mechanical properties. It is shown that the resistance of materials and the oxidation process change significantly with a change in temperature: for example, if at room temperature large metals are oxidized according to a logarithmic dependence, then as the temperature increases, the protective properties of the oxide film change and the oxidation law changes accordingly: from logarithmic to linear. Data on oxidation and degradation of pneumatic tires, their resistance to resistive thermal stresses that lead to cracking and accumulation of damage in the materials of pneumatic tire materials in various aggressive operating environments, under conditions that have been evaluated to real, were investigated in detail in this work.

References

Gent A. N., Walter J. D. Pneumatic Tire / Mechanical Engineering Faculty Research. 2006. URL: https:// ideaexchange.uakron.edu/mechanical_ideas/854/ (Last accessed: 05.09.2023).

Механіка шини: монографія / В.А. Перегон, В.А. Карпенко, Л.П. Гречко та ін. Харків: ХНАДУ, 2011. 404 с.

Ларін О.О. Комп’ютерне та математичне моделювання в задачах прогнозування надійності при поступових відмовах: монографія/ Ларін О.О., Водка О.О., Потопальська К.Є. Харків : НТУ «ХПІ», Юрайт 2020. 232 с. DOI: 10.20998/978-617-7450-20-6.

Ларін О.О. Експериментальні дослідження параметрів пружності та статичної міцності гумового композиту, що посиленний текстильним кордом / О. О. Ларін // Наукові нотатки. 2015. Вип. 52. С. 41–47. Режим доступу: http://nbuv.gov.ua/UJRN/Nn_2015_52_10.

Ларін О. О. (2016). Експериментальна оцінка опору втомі гумокордного композиту за ортогональної до арматури деформації до та після штучного старіння. Вісник НТУ «ХПІ» Серія: Динаміка та міцність машин, (26), 63–68. https://doi.org/10.20998/2078-9130.2016.26.79931

Kotial, P., Krmela, J., Frydrek, K., & Ruiak, I. (2012). The Chosen Aspects of Materials and Construction Influence on the Tire Safety. In Composites and Their Properties. InTech. https://doi.org/10.5772/48181.

Baranowski, P., Bogusz, P., Gotowicki P., Malachowski J. (2012). Assessment of mechanical properties of offroad vehicle tire: Coupons testing and FE model development. Acta Mechanica et Automatica. 6(2) 17–22.

Niu, Y., Zhang, S., Tian, G., Zhu, H., & Zhou, W. (2020). “Estimation for Runway Friction Coefficient Based on Multi-Sensor Information Fusion and Model Correlation”. Sensors 20(14):3886, 1–22. https://doi.org/10.3390/s20143886

Gong, Y., Chen, X., Yi, J., & Wang, H. (2023). Hydrodynamics and Friction Estimation for Wet Tire/Ground Interactions. In 2023 American Control Conference (ACC). IEEE. https://doi.org/10.23919/acc55779.2023.10156130

Rahman, M. M., Khan, F., Kaiser, M. S., & Ahmed, S. R. (2018). Effect of thermal ageing on mechanical behavior of synthetic and natural rubber dominated short flat bars. In DISRUPTIVE INNOVATION IN MECHANICAL ENGINEERING FOR INDUSTRY COMPETITIVENESS: Proceedings of the 3rd International Conference on Mechanical Engineering (ICOME 2017). Author(s). https://doi.org/10.1063/1.5044300

Staszczak, M., Pieczyska, E. A., Maj, M., Urbański, L., Odriozola, I., & Martin, R. (2015). Thermomechanical Properties of Vulcanized Rubber investigated by Testing Machine and Infrared Camera. Measurement Automation Monitoring, 4, 206–209.

Kaiser, S., Rabbani, R., Ahmed, R., & Kaiser, S. (2021). Temperature Dependent Mechanical Properties of Natural and Synthetic Rubber in Practical Structures. Acta Mechanica Slovaca, 25(3), 6–14. https://doi.org/10.21496/ams.2021.031

Song, J. (2004). Fatigue of cord-rubber composites for tires. The Pennsylvania State UniversityThe Graduate SchoolCollege of Engineering. (Original work published 2004).

Behroozinia, P., Mirzaeifar, R., & Taheri, S. (2017). A review of fatigue and fracture mechanics with a focus on rubber-based materials. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 1005–1019. https://doi.org/10.1177/1464420717719739

Qiu, X., Yin, H., & Xing, Q. (2022). Research Progress on Fatigue Life of Rubber Materials. Polymers, 14(21),4592. https://doi.org/10.3390/polym14214592

Krmela, J., & Krmelova, V. (2017). Tire casings and their material characteristics for computational modeling of tires. In 16th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture. https://doi.org/10.22616/erdev2017.16.n043

Kaiser, S., Kaiser, M. S., & Ahmed, S. R. (2020). Wear Behavior of Commercial Tire Rubber against Mild Steel in Dry, Wet and 3.5% NaCl Corrosive Environment. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 5(1), 1. https://doi.org/10.22219/jemmme.v5i1.10428

Jiang, N., Zhang, R., Li, Y., Li, N., Dong, L., Chen, C., & Tan, C. (2022). Hydrothermal Aging Mechanisms of All-Steel Radial Tire Composites. Polymers, 14(15), 3098. https://doi.org/10.3390/polym14153098.

Published

2024-01-29