TESTING OF MICROPROCESSOR TERMINALS OF RELAYPROTECTION IN CALCULATION MODES
DOI:
https://doi.org/10.35546/kntu2078-4481.2023.4.23Keywords:
digital relay protection, microprocessor protection terminal, simulation, experimental stand, induction motor.Abstract
Digitalization in the electric power industry is an integral part of the digital economy. An equally important task when training specialists in electrical engineering specialties is the digitalization of the educational process. To solve it, it is necessary to introduce software systems, with the use of which future specialists will be able to model objects of the electric power system, but on a more comfortable and safer platform. It is necessary to study the functionality of microprocessor terminals for relay protection and automation by means of their computer modeling, taking into account the behavior of protection in operating modes characteristic of the protected element. The paper discusses the issues of modeling a digital relay protection device using the example of a current cut-off for a 6 kV asynchronous electric motor with a three-phase short circuit with the ability to view the modeling results. Synthesized: a simulation model of the current cut-off circuit of an asynchronous motor; a subsystem that allows you to simulate a short circuit of an asynchronous motor with adjustable current and time settings. During the experiment on the model, it is possible to calculate the operation parameters of the microprocessor terminal protections and check the correct operation of the protections, as well as study the normal and emergency operating modes of the protected object. Evaluation of the simulation results allows for adjustment of the microprocessor-based protection device. The combined use of the developed model and experiment allows us to achieve the most complete study of the functionality of microprocessor relay protection devices.
References
Adefarati T., Bansal R. An overview of smart grid in protection perspective. Power system protection in smart grid environment. Boca Raton: Taylor & Francis, 2019. P. 3–31. URL: https://doi.org/ 10.1201/9780429401756-1.
Radimov S. M., Plis V. P. Relay protection devices functionality comparative analysis. Herald of advanced information technology. 2023. Vol. 6, no. 3. P. 227–239. URL: https://doi.org/10.15276/ hait.06.2023.15.
A comprehensive review of conventional and intelligence-based approaches for the fault diagnosis and condition monitoring of induction motors / R. R. Kumar et al. Energies. 2022. Vol. 15, no. 23. P. 8938. URL: https://doi.org/10.3390/en 15238938.
Broken rotor bar fault diagnosis techniques based on motor current signature analysis for induction motor – a review / S. Halder et al. Energies. 2022. Vol. 15, no. 22. P. 8569. URL: https://doi.org/10.3390/en15228569.
Wang J., Wang Z. Research and implementation of virtual circuit test tool for smart substations. Procedia computer science. 2021. Vol. 183. P. 197–204. URL: https://doi.org/10.1016/ j.procs.2021.02.050.
IOT integrated smart grid management system for effective energy management / N. S. Madhuri et al. Measurement: sensors. 2022. P. 100488. URL: https://doi.org/10.1016/j.measen. 2022.100488.
Impact of distributed generation on protection and voltage regulation of distribution systems: a review / S.-E. Razavi et al. Renewable and sustainable energy reviews. 2019. Vol. 105. P. 157–167. URL: https://doi.org/10.1016/j.rser.2019.01.050.
Memon A. A., Kauhaniemi K. An adaptive protection for radial AC microgrid using IEC 61850 communication standard: algorithm proposal using offline simulations. Energies. 2020. Vol. 13, no. 20. P. 5316. URL: https://doi.org/ 10.3390/en13205316.
Adaptive protection combined with machine learning for microgrids / H. Lin et al. IET Generation, transmission & distribution. 2019. Vol. 13, no. 6. P. 770–779. URL: https://doi.org/ 10.1049/iet-gtd.2018.6230.
Development of an intelligent system for distance relay protection with adaptive algorithms for determining the operation setpoints / O. Akhmedova et al. Energies. 2021. Vol. 14, no. 4. P. 973. URL: https://doi.org/10.3390/en 14040973.
Induction motor condition monitoring for sustainable manufacturing / J. Zhang et al. Procedia manufacturing. 2019. Vol. 33. P. 802–809. URL: https:// doi.org/10.1016/j.promfg.2019. 04.101.
Shabovta M., Besarab O., Plis V. Development of the experimental stand for studying and testing digital protection terminals. Problems of the regional energetics. 2023. No. 1(57). P. 17–27. URL: https://doi.org/10.52254/1857-0070.2023.1-57.02.
Eshkabilov S. Beginning MATLAB and Simulink. Berkeley, CA: Apress, 2022. 605 p. URL: https://doi.org/10.1007/978-1-4842-8748-4.
Ashok Kumar L., Indragandhi V., Uma Maheswari Y. MATLAB®/Simulink. Software tools for the simulation of electrical systems. 2020. P. 1–35. URL: https://doi.org/10.1016/b978-0-12-819416-4.00001-6.
Bibik O. V., Mazurenko L. I., Shykhnenko M. O. Formation of characteristics of operating modes of switched reluctance motors with periodic load. Electrical engineering & electromechanics. 2019. No. 4. P. 12–16. URL: https://doi.org/10.20998/2074-272x.2019.4.02.
Релейний захист і автоматика / С. В. Панченко та ін.; ред. В. М. Баженов. Харків: УкрДУЗТ, 2020. Т. 1. 250 с.
Кідиба В. П. Релейний захист електроенергетичних систем. Львів: Вид-во Нац. ун-ту «Львів. політехніка», 2015. 504 с.
Кухарчук В. В., Ведміцький Ю. Г., Граняк В. Ф. Вимірювання параметрів обертального руху електромеханічних перетворювачів енергії в перехідних режимах роботи: монографія. Вінниця: ВНТУ, 2019. 152 с.