COMPOSITES BASED ON VOLCANIC FILLERS WITH VARIOUS POLYMER MATRIX TYPES
DOI:
https://doi.org/10.35546/kntu2078-4481.2024.1.10Keywords:
composite, filler, perlite, zeolite, latex, composition, structure, porosityAbstract
The article presents the results of the research in the field of structure formation of polymer composites with an increased content of mineral fillers. At the same time, by-products of volcanic rock extraction – perlite and zeolite from Transcarpathian deposits – were used as fillers, and as binders – aqueous dispersions of copolymers of two types – Policril 590i and Latex 2012. The theoretical prerequisite for the influence on the formation of the structure and, accordingly, on the properties of the composites became known genetic features of composition and structure of the investigated fillers. In the development of new polymer composites, the choice of the filler-binder system plays an important role. The use of polymers in the creation of volumetric composites as a matrix of aqueous dispersions is a poorly studied topic that requires in-depth research. Therefore, the purpose of this study was to study the processes of forming the structure of composites and how to adjust it by varying the types of filler and polymer matrix and their mass ratio. In turn, this affected the properties of composites. During of the research, attention was focused on the process of forming the structure of composites and the analysis of interaction in the filler-polymer matrix system. The influence of the type of combination of polymer and binder with fillers on the development of the pore structure and physical and mechanical properties of composites was studied. The results of the research showed that the use of different types of combinations of the studied components allows you to effectively regulate such properties of composites as water absorption, which changed in the interval from 2.6 to 14.2 wt%, open porosity – from 3.58 to 21.35%, residual deformation – from 0.1 to 0.3, and Yungai Modulus – from 19.7 to 677.5 MPa, which opens up wide possibilities for adjusting the characteristics of composites for specific applications.
References
Stephen Grove. Composite Materials and Structures for Engineering Students. Independently published, 2018. 397 p.
Melnуk L. Research of electrical properties of epoxy composite with carbon fillers. Technology audit and production reserves. 2017. Vol. 3. № 1/35. P. 1539–1641.
Kilic A., Kahraman E., Kilic Ö. Evaluation of the Use of Perlite in Industry. Conference: International Congress on Engineering and Architecture, Alanya, 14–16 November 2018. Alanya (Turkey), 2018. P. 1549–1556.
Пащенко 0.О., Воронков М.Г., Крупа О.А., Свідерський В.А. Гідрофобний вспучений перліт. К.: Наукова думка, 1977, 204 с.
Strzemiecka B., Voelkel A., Kasperkowiak M. Characterization of zeolites as potential new generation fillers in abrasive articles. Physicochemical properties of zeolites and their interactions with resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 372. № 1–3. Р. 80–85.
Barczewski M., Hejna A., Kosmela P., Mysiukiewicz O., Piasecki A., Sa£asiñska K. High-density polyethylene – expanded perlite composites: structural oriented analysis of mechanical and thermomechanical properties. Materiale Plastice. 2022. Vol. 3. № 59. P. 52–63. https://doi.org/10.37358/mp.22.3.5605
Spoerk M., Sapkota J., Weingrill G., Fischinger T., Arbeiter F., Holzer C. Shrinkage and warpage optimization of expanded‐perlite‐filled polypropylene composites in extrusion‐based additive manufacturing. Macromolecular materials and engineering. 2017. Vol. 10. № 302. P. 1700143.
Мельник Л.І., Черняк Л., Свідерський В. Особливості вулканічних порід як матеріалів для полімерних композитів. Вісник Хмельницького національного університету. 2022. № 1. Т. 305. С. 14–19. https://www.doi.org/10.31891/2307-5732-2022-305-1-14-19
Мельник Л., Белоусов О., Свідерський В., Черняк Л. Питання зменшення енергоємності виготовлення пористих композиційних матеріалів. Будівельні матеріали та вироби. 2019. № 1–2. Т. 102. С. 48–50. https://doi.org/10.48076/2413-9890.2021-102-09.
Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938. Vol. 60. № 2. P. 309. https://doi.org/10.1021/ja01269a023.
Vovchenko L.L., Matzui L.Y., Zhuravkov A.V., Samchuk A.P. Electrical resistivity of compacted TEG and TEG-Fe under compression. Journal of Physics and Chemistry of Solids. 2006. Vol. 67. № 5–6. P. 1168–1172. https://doi.org/10.1016/j.jpcs.2006.01.042.
Kuila U., Prasad M. Specific surface area and poresize distribution in clays and shales. Geophysical Prospecting. 2013. Vol. 61. No. 2. P. 341–362. https://doi.org/10.1111/1365-2478.12028.