STUDY OF THE INFLUENCE OF SYNTHESIS PARAMETERS ON THE PROPERTIES OF COBALT-NICKEL FERRIT

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.1.17

Keywords:

ferritization, complite factorial experiment, remanent magnetization, coercive force, anisotropy constant

Abstract

In recent years, the field of use of cobalt ferrites has been expanding, primarily due to its specific properties, such as high values of coercive force, chemical stability, significant magnetocrystalline anisotropy. Physico-chemical properties of nanodispersed cobalt ferrites depend on many factors (production technology, synthesis conditions, 1’and nature of starting substances). Currently, the development and use of the latest technologies for the synthesis of ferrites, which will ensure the production of a nanodispersed product, is relevant. In addition, the properties of cobalt ferrite are affected by the presence of additional metal cations. Mixed ferrites are very promising due to the possibility of varying their properties. The paper considered the possibility of using the method of planning the experiment to select the optimal modes of ferritization in the synthesis of cobalt-nickel ferrite. The phase composition of ferrites was determined by X-ray phase analysis. Magnetic properties were determined using a vibrating magnetometer. The residual magnetization and coercive force were determined by the constructed hysteresis loops. On the basis of numerous experiments, the initial pH of the solution, the processing time, and the temperature of the process were selected as the main technological parameters affecting the magnetic characteristics. The paper examines the effect of synthesis conditions on residual magnetization, coercive force, and anisotropy coefficient of nickelcobalt ferrites obtained by the plasma method. A complete three-factor experiment was used to construct experimentalstatistical models. It was established that the main influencing factors are the initial pH of the solution and the processing temperature. The presented mathematical models adequately describe the obtained dependencies. The results showed that the pH of the reaction medium is a parameter that increases the values of residual magnetization, coercive force, and anisotropy constant.

References

Ortiz-Quiñonez J. L., Pal U., Villanueva M. S. Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS omega, 3(11), 2018. P. 14986–15001.

Jeevanantham B., Song Y., Choe H., Shobana M. K. Structural and optical characteristics of cobalt ferrite nanoparticles. Materials Letters: X. 12. 2021. P. 100105.

Ahn Y., Choi E. J., Kim S. Crystallographic and Magnetic Properties of Nanocrystalline Cobalt Ferrite Particles. The Korean Journal of Ceramics, 5(3). 1999. P. 303–305.

Bouet L., Presmanes L., Tailhades P., Rousset A., Legros R. Rapid Thermal Annealing of Certain Fe-Co Spinel Oxides: Structural Modification and Magneto-Optical Properties. Journal of the Magnetics Society of Japan, 20(S_1_MORIS_96). S1_1996. P. 329–332.

Drofenik M., Lisjak D., Makovec D. (2005, May). The synthesis and properties of magnetic nanoparticles. In Materials Science Forum (Vol. 494, pp. 129–136). Trans Tech Publications Ltd.

Gabal M. A. Non-isothermal decomposition of NiC2O4–FeC2O4 mixture aiming at the production of NiFe2O4. Journal of Physics and Chemistry of Solids, 64(8). 2003. P. 1375–1385.

Rana K., Thakur P., Sharma P., Tomar M., Gupta V., Thakur A. Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceramics International, 41(3). 2015. P. 4492–4497.

Sharifianjazi F., Moradi M., Parvin N., Nemati A., Rad A. J., Sheysi N., . Asl M. S. Magnetic CoFe2O4 nanoparticles doped with metal ions: a review. Ceramics International, 46(11). 2020. P. 18391–18412.

de Medeiros F., Madigou V., Lopes-Moriyama A. L., de Souza C. P., Leroux C. Synthesis of CoFe2O4 nanocubes. Nano-Structures & Nano-Objects. 21. 2020. P. 100422.

Zhao L. J., Jiang Q. Solvothermal synthesis of Co/CoFe2O4 nanobelts. Materials Letters.64(6). 2010. P. 677–679.

Duong H. D. T., Nguyen D. T., Kim K. S. Effects of process variables on properties of CoFe2O4 nanoparticles prepared by solvothermal process. Nanomaterials. 11(11). 2021. P. 3056.

Ageba R., Kadota Y., Maeda T., Takiguchi N., Morita T., Ishikawa M., Hemsel T. Ultrasonically assisted hydrothermal method for ferroelectric material synthesis. J. Korean Phys. Soc. 57(4). 2010. P. 918–923.

Sergeyeva O., Pivovarov A. “ Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies. 3(6). 2015. P. 31–35.

Frolova L. A., Pivovarov A. A., Tsepich E., “Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+–Ni2+–SO4

−–OH− System”, Nanophysics, Nanophotonics, Surface Studies and Applications Springe, Cham, pp. 213–220. 2016.

Ortiz-Quiñonez, J. L., Pal, U., & Villanueva, M. S. (2018). Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co–Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS omega, 3(11), 14986–15001.

Jeevanantham, B., Song, Y., Choe, H., & Shobana, M. K. (2021). Structural and optical characteristics of cobalt ferrite nanoparticles. Materials Letters: X, 12. 100105.

Ahn, Y., Choi, E. J., & Kim, S. (1999). Crystallographic and Magnetic Properties of Nanocrystalline Cobalt Ferrite Particles. The Korean Journal of Ceramics, 5(3). 303–305.

Bouet, L., Presmanes, L., TAILHADES, P., ROUSSET, A., & Legros, R. (1996). Rapid Thermal Annealing of Certain Fe-Co Spinel Oxides: Structural Modification and Magneto-Optical Properties. Journal of the Magnetics Society of Japan, 20(S_1_MORIS_96).S1_329–332.

Drofenik M., Lisjak D., Makovec D. (2005, May). The synthesis and properties of magnetic nanoparticles. In Materials Science Forum (Vol. 494, pp. 129–136). Trans Tech Publications Ltd.

Gabal, M. A. Non-isothermal decomposition of NiC2O4–FeC2O4 mixture aiming at the production of NiFe2O4. Journal of Physics and Chemistry of Solids, 64(8), 2003. 1375–1385.

K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, “Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature”, Ceramics International, vol. 41, no. 3, pp. 4492–4497, 2015.

Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Rad, A. J., Sheysi, N., ... & Asl, M. S. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: a review. Ceramics International, 46(11), 18391–18412.

de Medeiros, F., Madigou, V., Lopes-Moriyama, A. L., de Souza, C. P., & Leroux, C. (2020). Synthesis of CoFe2O4 nanocubes. Nano-Structures & Nano-Objects, 21, 100422.

Zhao, L. J., & Jiang, Q. (2010). Solvothermal synthesis of Co/CoFe2O4 nanobelts. Materials Letters, 64(6), 677–679.

Duong, H. D. T., Nguyen, D. T., & Kim, K. S. (2021). Effects of process variables on properties of CoFe2O4 nanoparticles prepared by solvothermal process. Nanomaterials, 11(11), 3056.

R. Ageba, Y. Kadota, T.Maeda, N. Takiguchi, T. Morita, M. Ishikawa, “Ultrasonically-assisted hydrothermal method for ferroelectric material synthesis”, Journal of Korean Physic Society, vol. 57, no. 4, pp. 918–923, 2010.

O. Sergeyeva, A. Pivovarov, “Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure”, Eastern-European Journal of Enterprise Technologies, vol. 3, no. 6, p. 75, 2015.

L. A. Frolova, A. A. Pivovarov, E. Tsepich, “Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+–Ni2+–SO4

−–OH− System”, Nanophysics, Nanophotonics, Surface Studies and Applications Springe, Cham, pp. 213–220, 2016.

Published

2024-05-01