DETERMINING OPTIMAL COMPRESSION ALGORITHM FOR FILES OF DIFFERENT FORMATS
DOI:
https://doi.org/10.35546/kntu2078-4481.2024.2.17Keywords:
algorithm, compression, encoding, Shannon-Fano, Huffman, RLE, LZ78.Abstract
The aim of the article is to highlight possible areas of the use of compression algorithms in various fields. The article investigates the efficiency of the compression of files of different formats and provides recommendations on the optimal compression algorithms for specific scenarios. The research was carried out empirically: compression algorithms were implemented at the software level, the programs were used to compress files of various formats, the size of the resulting files was determined, and a comparison of the efficiency of the methods was made. Research results. The article presents a table of file sizes after compression using different compression algorithms, calculates compression ratios for each case, determines the average compression ratios for each compression algorithm, analyses the efficiency of compression algorithms, and identifies the optimal compression algorithms for files of different formats. The scientific novelty of this work is an integrated approach to comparing compression algorithms by compression ratios on different file formats and the study of the combination of Huffman and LZ78 algorithms, which has not been widely studied before. This allows us to gain a deeper understanding of the process of compressing files of different formats and identify effective algorithms for specific data types. The analysis can contribute to the development and improvement of file compression methods and have practical applications in various fields, such as data storage and transmission, file compression, and improving the performance of information processing systems. The practical significance of the work lies in its potential usefulness for various fields. It provides recommendations and conclusions on the selection of efficient file compression algorithms for different file formats. This can have a positive impact on data storage and transmission, data processing speed, software development, and multimedia data. Using optimal compression algorithms helps reduce file size, saves resources, and improves user experience.
References
Ващенко А. В., Дроздова Є . А. Вирішення проблеми зберігання даних за допомогою програми стиснення файлів. Інформаційні системи та комп’ютерно-інтегровані технології: ідеї, проблеми, рішення – 2021. 2021. С. 13–15.
Prudvi C., Muchahary D., Raghuvanshi A. S. Analysis of image compression techniques for iot applications. 2022 international conference on intelligent technologies (CONIT), м. Hubli, India, 24–26 черв. 2022 р. 2022. DOI:10.1109/conit55038.2022.9848206
Image compression using huffman coding scheme with partial/piecewise color selection / A. H. M. Z. Karim та ін. 2021 IEEE 4th international conference on computing, power and communication technologies (GUCON), м. Kuala Lumpur, Malaysia, 24–26 верес. 2021 р. 2021. DOI:10.1109/gucon50781.2021.9573863
Dharma Walidaniy W., Yuliana M., Briantoro H. Improvement of PSNR by Using Shannon-Fano Compression Technique in AES-LSB StegoCrypto. 2022 international electronics symposium (IES), м. Surabaya, Indonesia, 9–11 серп. 2022 р. 2022. DOI:10.1109/ies55876.2022.9888656
Pic X., Antonini M. A constrained Shannon-Fano entropy coder for image storage in synthetic DNA. 2022 30th european signal processing conference (EUSIPCO), м. Belgrade, Serbia, 29 серп. – 2 верес. 2022 р. 2022. DOI:10.23919/eusipco55093.2022.9909833
Gupta M. Alternatives to huffman coding by comparison to other algorithms. 2021 innovations in power and advanced computing technologies (i-pact), м. Kuala Lumpur, Malaysia, 27–29 листоп. 2021 р. 2021. DOI:10.1109/ipact52855.2021.9696497
Compressed DNA coding using minimum variance huffman tree / P. Mishra та ін. IEEE communications letters. 2020. Т. 24, № 8. С. 1602–1606. DOI:10.1109/lcomm.2020.2991461
Image compression using run length encoding and its optimisation / A. Birajdar та ін. 2019 global conference for advancement in technology (GCAT), м. BANGALURU, India, 18–20 жовт. 2019 р. 2019. DOI:10.1109/gcat47503.2019.8978464
Saidani A., Xiang J., Mansouri D. A new lossless compression scheme for wsns using RLE algorithm. 2019 20th asia-pacific network operations and management symposium (APNOMS), м. Matsue, Japan, 18–20 верес. 2019 р. 2019. DOI:10.23919/apnoms.2019.8893093
Koppl D., Navarro G., Prezza N. HOLZ: high-order entropy encoding of lempel-ziv factor distances. 2022 data compression conference (DCC), м. Snowbird, UT, USA, 22–25 берез. 2022 р. 2022. DOI:10.1109/dcc52660.2022.00016
Puglisi S. J., Rossi M. On lempel-ziv decompression in small space. 2019 data compression conference (DCC), м. Snowbird, UT, USA, 26–29 берез. 2019 р. 2019. DOI:10.1109/dcc.2019.00030
Muller R. Linear computation coding inspired by the lempel-ziv algorithm. 2022 IEEE information theory workshop (ITW), м. Mumbai, India, 1–9 листоп. 2022 р. 2022. DOI:10.1109/itw54588.2022.9965875
Decompressing lempel-ziv compressed text / P. Bille та ін. 2020 data compression conference (DCC), м. Snowbird, UT, USA, 24–27 берез. 2020 р. 2020. DOI:10.1109/dcc47342.2020.00022