EXPLORING THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR IMPROVED ACCURACY IN ENVIRONMENTAL TEMPERATURE PREDICTION

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.2.20

Keywords:

temperature prediction, neural network combination, recurrent neural networks, quality metrics.

Abstract

Artificial neural networks are becoming increasingly popular tools in researching and forecasting weather conditions. The use of these networks for predicting ambient temperature in the short term holds great potential in fields where accurate and rapid forecasts are critically important. Weather warnings are considered key informational products as they help protect lives and property from dangers associated with extreme weather conditions. The reliability and timeliness of the received information are of significant importance, not just the fact of the warning itself. The aim of the research was to increase the accuracy of temperature forecasting and select the most effective neural network model for addressing the temperature prediction task. Weather parameters for the research were collected from the climate data center and divided into three datasets (training, testing, and validation). Neural networks were trained and tested. A recurrent neural network (RNN) and a combination of neural networks (convolutional and fully connected) were chosen as promising approaches to increase forecast accuracy. Using these models with the datasets, forecasts of future temperatures were made. The accuracy of these forecasts was verified using quality metrics such as mean absolute error (MAE), mean squared error (MSE), and mean absolute percentage error (MAPE). It was demonstrated that the proposed models have errors of 15.46% and 14.22% for forecasting temperature with the recurrent neural network and its combination, respectively. The results confirm that proposed models have the potential for successful application in temperature forecasting.

References

Івус Г.П. Спеціалізовані прогнози погоди: підручник. 2012. URL: http://surl.li/tdgwk

Перелигін Б.В., Ткач Т.Б. Застосування штучних нейронних мереж для обробки інформації в технічних системах моніторингу навколишнього середовища: навч. посіб. Одеса: ОДЕУ, 2014. 218 с. URL: http://surl.li/rrgro

Хоменко І.А. Динаміка атмосфери: навчальний посібник. Одеса: Одеський державний екологічний університет. 2022. URL: http://surl.li/tdgrg

Технології у сфері погоди: як далеко зайшли синоптики. URL: https://marketer.ua/ua/weather-technologyhow-far-forecasters-have-come/

Shrivastava G. Application of Artificial Neural Networks in Weather Forecasting: A Comprehensive Literature Review / International Journal of Computer Applications. 2012. Vol. 51, no. 18. P. 17–29. URL: https://doi.org/10.5120/8142-1867

Дорошенко А.Ю., Шпиг В.М., Кушніренко Р.В. Застосування машинного навчання для уточнення чисельних метеорологічних прогнозів // Проблеми програмування. Київ. 2020. С. 375–385. URL: https://doi.org/10.15407/pp2020.02-03.375

Bi K. Accurate medium-range global weather forecasting with 3D neural networks. Nature. 2023. URL: https://doi.org/10.1038/s41586-023-06185-3

Ajina A. Prediction of weather forecasting using artificial neural networks : Journal of Applied Research and Technology. 2023. No. 2. P. 205–211. URL: https://doi.org/10.22201/icat.24486736e.2023.21.2.1698

Abhishek К. Weather Forecasting Model using Artificial Neural Network: Procedia Technology. 2012. Vol. 4. P. 311–318. URL: https://doi.org/10.1016/j.protcy.2012.05.047

Baboo S. S., Shereef I. K. An Efficient Weather Forecasting System using Artificial Neural Network. International Journal of Environmental Science and Development. 2010. P. 321–326. URL: https://doi.org/10.7763/ijesd.2010.v1.63

Smith B. A. Air temperature prediction using artificial neural networks. International Journal of Computational Intelligence Volume 3 Number 3, 2006. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&

Гетьман І., Держевецька М., Бауліна Т., Кухтік Т., & Жуков М. Розробка програмного комплексу для коригування ваги хворих на цукровий діабет на основі використання нейронної мережі з логістичною регресією. Itsynergy, (1), 2022. C. 26–46. URL: https://www.its.istu.edu.ua/ITS/article/view/10

Published

2024-07-01