DETERMINATION OF SAFE OPERATION LIMITS FOR A FOREST MACHINE WITH ASYMMETRIC POSITIONING OF THE WORKING TOOL ON SLOPED TERRAIN

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.3.10

Keywords:

forest machine, force superposition, asymmetric load, terrain slope, stability loss.

Abstract

The features of operating forest machines on terrains with complex relief are considered. The greatest impact on the occurrence of emergency situations in the forest is due to the slope of the terrain and unevenness of the support surface. The main focus is on the problems of loss of stability of forest machines on slopes due to the asymmetric placement of mounted equipment, such as manipulators and telescopic booms. The main factors affecting stability, such as surface slope and asymmetric loads from the machine’s working units, are investigated. An analytical model is proposed to determine the boundaries of safe operation, which includes the application of the superposition principle of forces. This principle allows studying the stability of a three-axle harvester during its technological operations on an inclined support surface. Three options for resolving the static indeterminacy of the constructed force system are proposed. The developed methodology allows calculating the maximum weight of a tree trunk that can be safely processed by the machine, as well as determining the safe parameters for the manipulator boom’s reach, depending on the angle of the manipulator’s rotation, the weight of the wood, and the terrain’s slope. Additionally, diagrams are constructed to provide a visual representation of permissible operating conditions for forest machines, which can be used during work planning to reduce the risk of accidents related to overturning. It is demonstrated that the correct placement of the machine relative to the load and consideration of weight distribution can significantly enhance work safety, contributing to increased productivity in uneven terrain conditions. The obtained results can be used not only to improve the safety of forest machine operations but also in the future for automating their work, reducing operator workload, and increasing the efficiency of forest machine operations in difficult terrain conditions.

References

Hakkila P. Logging in Finland. Acta Forestalia Fennica. vol. 207. 1989. 21 – 56. URL: https://doi.org/10.14214/aff.7654.

Bell J. (2002). Changes in logging injury rates associated with use of feller-bunchers in West Virginia. Journal of Safety Research. vol. 33(4). 2002. 436 – 471. URL: https://doi.org/10.1016/S0022-4375(02)00048-8.

Monarca, D., M. Cecchini, A. Colantoni, S. Di Giacinto, G. Menghini, and L. Longo. Study on the possibility of application of a compact roll over protective structure for agricultural wheeled narrow track tractors. Journal of Agricultural Engineering. vol. XLIV(e136). 2013. 681 – 685.

Jaka K., Mirko M. 2000. Occupational safety and health in Europe’s forestry industry. EU-OSHA – European Agency for Safety and Health at Work. Publications Office of the EU. vol.28(1). 2007. 55 – 62.

Hannes M., Elizabeth Q. Scenarios and causes of rollover incidents with self-propelled. Agricultural Engineering International. vol. 16(1). 2014. 236 – 246 URL: https://www.researchgate.net/publication/287618183.

Mayrhofer H., Quendler E., Boxberger J. Aagricultural machinery in Austria. Journal of Agricultural Engineering. vol. 44(2). 2013. 57 – 63.

Gravalos, I., Gialamas, T., Loutridis, S., Moshou, D., Kateris, D., Xyradakis, P., Tsiropoulos, Z. An experimental study on the impact of the rear track width on the stability of agricultural tractors using a test bench. Journal of Terramechanics. vol. 48(4). 2011. 48. 319 – 323 URL: http://dx.doi.org/ 10.1016/j.jterra.2011.04.003

Previati G., Gobbi M., Mastinu G., Mathematical models for farm tractor rollover prediction. International Journal of Vehicle Design. vol. 64(4). 280 – 303. URL: http://dx.doi.org/10.1504/IJVD.2014.058486.

Spencer H., Owen M., Glasbey A. On-site measurement of the stability of agricultural machines. Journal of Agricultural Engineering Research. vol. 31(1) 1985. 81–91. URL: https://doi.org/10.1016/0021-8634(85)90126-X.

Bukshetwar P. ADAS using AI. International Journal for Research in Applied Science & Engineering Technology. vol. 12(1). 2024. URL: https://dx.doi.org/10.22214/ijraset.2024.57919.

Shadrin, S., Ivanova A. (2019). Analytical review of standard SAE J3016. Doroga. Infrastruktura. vol. 21(3). 2019. 32 – 48.

Луста Ю. Р. Метод суперпозиції сил у дослідженні безпечних умов експлуатації лісозаготівельних машин під дією асиметричних навантажень. Сучасні технології у промисловому виробництві (м. Суми, 18–21 квітня 2023 р.). 2023. – С. 232–233. URL: https://chem.teset.sumdu.edu.ua/images/articles/2023/stpv-2023.pdf.

Білик Б. В. Теорія та проектування самохідних лісових машин. Львів: РВВ НЛТУУ, 2014. 297 с.

Луста Ю. Р., Мачуга О. С. Обґрунтування розрахункової моделі харвестера на ухилі. Збірник наукових праць Міжнародної Карпатської Школи: зимова сесія (21-25 лютого 2024 року): 2-ге вид., доповн. Косів: Наукове товариство імені Шевченка. 2024. С. 162 – 164. URL: https://www.researchgate.net/publication/382829714

Published

2024-11-26