POLYMER COMPOSITES USING ANDESITE FIVES: STRUCTURAL AND MECHANICAL ASPECTS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.3.12

Keywords:

composite, filler, andesite, latex, composition, structure, porosity.

Abstract

In this work, polymer composite materials based on andesite screenings – a mineral filler formed as a by-product of volcanic rock mining and water dispersions of polymers, such as acrylic Policril 590 and butadiene-styrene Latex 2012, used as a matrix – were studied. The aim of the work was to study the influence of andesite on the physical and mechanical properties of composites under the conditions of a high content of mineral filler. The main attention was paid to the analysis of the interaction between the polymer matrix and the filler, which made it possible to investigate in detail the processes of formation of the pore structure of materials. The study showed that the use of different types of polymer binders makes it possible to effectively control the properties of materials by changing their water absorption, porosity and mechanical characteristics. It was established that the water absorption varies from 2,2 to 6,4% depending on the type of polymer binder and the concentration of the filler. The open porosity of the materials ranged from 3,14 to 12,34%, which makes it possible to control the internal structure of composites for different areas of use. The Young’s modulus also underwent significant changes and varied from 2,5 to 56,6 MPa, which indicates the possibility of an adjustable change in the stiffness of the composites depending on the composition. Thus, the use of Policril 590 provided lower stiffness and greater plasticity, while Latex 2012 showed higher stiffness and less water absorption. At the maximum concentration of the filler (90 wt.%) with the use of Latex 2012, the composite reached a Young’s modulus of 56,6 MPa, which significantly exceeded the indicators of a similar composite when the binder was replaced with Policril 590, where this indicator was 14,1 MPa. The obtained results make it possible to effectively control the structure of composites and their physical and mechanical properties by varying the concentration of the filler and the type of polymer matrix.

References

Hamid Essabir, Marya Raji, Sana Ait Laaziz, Denis Rodrique, Rachid Bouhfid, Abou el Кacem Qaiss. Thermomechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering. 2019. № 149. Р. 1-11. https://doi.org/10.1016/j.compositesb.2018.05.020.

Melnyk L. I., Chernyak L. P., Sviderskyy V. A., Dorogan N.A. Aspects of making of a composite material when using red mud. Eastern-European Journal of Enterprise Technologies. 2018. Vol 2. № (6-92). Р. 23-28. https://doi.org/10.15587/1729-4061.2018.125702.

Melnyk L., Myronyuk O., Ratushniy V., Baklan D. The feasibility of using red mud in coatings based on glyptal. French-Ukrainian Journal оf Chemistry. 2020. Vol. 08. Р. 88-94. https://doi.org/10.17721/fujcV8I1P88-94.

Мельник Л. І., Черняк Л.П., Свідерський В.В. Особливості вулканічних порід як матеріалів для полімерних композитів. Вісник Хмельницького національного університету. 2022. № 1. Т. 305. С. 14-19. https://www.doi.org/10.31891/2307-5732-2022-305-1-14-19.

Aydın M., et al. Effect of Andesite Powder on the Mechanical and Thermal Properties of Polypropylene Composites. Journal of Materials Science, 2017. Vol. 52. № 5, Р.2351-2362.

Soydal Ulku, Kocaman Suheyla, Marti Mustafa Esen, Ahmetli Gulnare. Study on the reuse of marble and andesite wastes in epoxy-based composites. Polymer Composites. 2018. Vol. 39. № 9. Р. 3081-3091, https://doi.org/10.1002/pc.24313.

Kumar S., Patel R. Abrasion Resistance of Rubber-Andesite Composites: Performance in Industrial Applications. Elastomer Technology Journal. 2020. Vol. 34. № 6. Р. 89-97.

Nguyen H., Zhang T. Innovative Approaches in Andesite-Polymer Composite Fabrication. Composite Materials Science. 2022. Vol. 13. № 2. Р. 278-287.

Vovchenko L. L., Matzui L. Y., Zhuravkov A. V., Samchuk A. P. Electrical resistivity of compacted TEG and TEG-Fe under compression. Journal of Physics and Chemistry of Solids. 2006. Vol. 67. № 5-6. P. 1168-1172. https://doi.org/10.1016/j.jpcs.2006.01.042.

Мelnyk L. Formation of composite with variation of dispersity of filler and type of binder. Technical sciences and technologies. 2024. Vol. 1. № 35. Р. 198-203. https://doi.org/10.25140/2411-5363-2024-1(35)-198-203.

Мельник Л.І., Черняк Л.П., Пахомова В.М., Шнирук О.М. Керамічний композит на основі вулканічних порід. Вчені записки Таврійського національного університету імені В.І. Вернадського. Серія: Технічні науки. 2023. Т. 34(73). № 2. С. 52-57. https://doi.org/10.32782/2663-5941/2023.2.2/10.

Melnyk L.I., Cherniak L.P., Yevpak V.V. composites based on fly ash with different polymer matrixes. Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences. 2024. Vol. 2. № 1. Р. 106-112. https://doi.org/10.32782/2663-5941/2024.1.2/18.

Myronyuk O., Baklan D., Nudchenko L. Evaluation of the Surface Energy of Dispersed Aluminium Oxide Using Owens-Wendt Theory. Technology Audit and Production Reserves. 2020. Vol. 2. № 1(52). С. 25-27. https://doi.org/10.15587/2312-8372.2020.200756.

Liubov Melnyk1, Lev Chernyak1, Valentin Sviderskyy1, Ludmila Vovchenko, Viktoria Yevpak. Comparative Study of Various Volcanic Materials as Fillers in Polymer Composites. Zastita Materijala. 2024. Vol. 65. № 3. https://doi.org/10.62638/ZasMat1171.

Published

2024-11-26