TWO-LEVEL DETECTION OF PROBE ATTACKS BY MEANS OF NEURAL NETWORKS
DOI:
https://doi.org/10.35546/kntu2078-4481.2024.3.33Keywords:
attack, Probe, two-level detection, category, class, multilayer perceptron, self-organizing map, sampling, accuracy.Abstract
In this paper, a study of two-level detection is carried out network attacks of the Probe category by means of neural networks. The use of a multilayer perceptron is proposed configurations 31-1-124-5, where 31 is the number of input neurons; 1 – quantity hidden layers; 124 – the number of hidden neurons; 5 – quantity resulting neurons to detect the network attack category DoS, U2R, R2L and Probe (on the first level) and a self-organizing Kohonen map 10*10 to detect network attack classes according to the Probe category: Ipsweep; Nmap; Portsweep; Satan (on the second level). To detect network attacks categories Probe created using the Python language and the PyTorch «MLP1-SOM2_Probe» software model based on the implementation of proposed multilayer perceptron configurations and of the self-organizing map of Kohonen. For the organization of research, data from KDDСup99 that has been properly processed at the preparatory stage: data cleansing; selection of features; mapping of categorical features; scaling and normalization; splitting the data into appropriate samples (training, testing and validation). On the created model «MLP1-SOM2_Probe» defined optimal parameters of the corresponding neural networks: activation function, optimizer and learning speed for MLP1; the degree of influence of the neuron on nearby neurons and learning rate for SOM2. Evaluation conducted quality parameters of two-level detection of Probe attacks on the created model «MLP1-SOM2_Probe». It is determined that two-level detection of attacks on models «MLP1-SOM2_Probe» averaged about 98.8%, which allows achieve higher accuracy compared to two-level attack detection based on the use of the «MLP1-MLP2_Probe» model.
References
Пахомова В. М., Маслак А. В. Визначення атак категорії Probe з використанням бази даних KDDCup99 та нейронечіткої технології. Вчені записки Таврійського національного університету імені В.І. Вернадського. Серія: Технічні науки. Том 33(72). № 5, 2022. С. 135-140. DOI: https://doi.org/10.32872/2663-5941/2022.5/19.
Пахомова В. М., Павленко І. І. Дослідження параметрів якості визначення мережевих атак категорії PROBE з використанням самоорганізуючої карти. SworldJournal. 2022. Issue 11. Part 1. pp. 100-104. DOI: 10.30888/2663-5712.2022-11-01-022.
Пахомова В. М., Квочка М. Ю. Визначення атак категорії Probe засобами багатошарової нейронної мережі. Вчені записки Таврійського національного університету імені В.І. Вернадського. Серія: Технічні науки. Том 34(73). № 4, 2023. С. 93-98. https://doi.org/10.32787/2663-5941/2023.4/15.
Zhukovyts’kyy I. V., Pakhomova V. M., Ostapets D. O., Tsyhanok O. I. Detection of attacks on a computer network based on the use of neural networks complex. Science and Progress of Transport. 2020, no. 5(89), pp. 68–79. doi: https://doi.org/10.15802/stp2020/218318.
KDD Cup 1999 Data. Intrusion detection dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Géron Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc. 2019. 856 p.
Daython M. Scaling your data using scikit-learn scalers. Medium, 2020. Retrieved from https://medium.com/@daython3/scaling-your-data-using-scikit-learn-scalers-3d4b584107d7.
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V. Scikit-learn developers. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research. 2011. Vol. 12. p.p. 2825-2830. Retrieved from https://scikit-learn.org.
Alves Gisely. Discovering SOM, an unsupervised neural network. Medium, Dec 27, 2018. Retrieved from https://medium.com/neuronio/discovering-som-an-unsupervised-neural-network-12e787f38f9.
Vesanto J., Alhoniemi E. Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks, 2000. Vol. 11. Iss. 3. р.р. 586-600. DOI: 10.1109/72.846731.