A FUZZY APPROACH TO MODELING AND SOLVING ORDERING AND SELECTING PROBLEMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2022.3.10

Keywords:

fuzzy set, ordering, selecting, fuzzy similarity relation, aggregation, qualitative and quantitative characteristics.

Abstract

The ordering and selecting of objects arise in various fields of human activity. In cases where information about the characteristics of objects obtained from experts is used, fuzzy problem models are proposed that take into account various types of uncertainty and more logically reflect real situations. Special attention is drawn to the adequacy problems or homomorphism of empirical and mathematical models in problems with different types of data measured on different scales, namely, on ratio, order, intervals, and absolute scales. In such cases, according to the positions of the representative measurement theory, it is necessary to ensure the invariance of the calculation results in the presence of both quantitative and qualitative data. The paper considers the theoretical substantiation and development of an invariant procedure for solving the problems of ordering and selecting applicants for vacant positions in the enterprise based on the assessment of their competitiveness, taking into account various types of information that can be obtained on the basis of expert assessments. The solution of the problem is based on a separate comparison of the characteristics of the applicants with the corresponding best characteristics in relation to the position or profession (standard) based on the use of the linguistic correlation coefficient, which is used to determine a fuzzy similarity measure of the standard and the applicants. Theorems about the invariance of such similarity measure when measuring characteristics in different scales are proved. An example of solving one selection problem regarding the appointment of the best candidates from the applicants, who submitted relevant documents for vacant positions in the enterprise, while determining their characteristics according to order and absolute scales, is presented.

References

Портер М. Конкуренция. М.: Издательский дом «Вильямс», 2003. 96 с.

Овчаренко Г.М., Шабрацький С.В. Конкурентоспроможність персоналу та її вплив на формування нематеріальних активів підприємства. URL: http://www.ukr.vipreshebnik.ru/ upr-presonal/4359-konkurentospromozhnistpersonaluta- jiji-vpliv-na-formuvannya-nematerialnikh-aktivivpidpriemstva.html

Олійник А.С., Піхуля О.Г., Романова О.В., Лопан А.М. Конкурентноспрможність персоналу як складова ефективної діяльності підприємства. Економіка&Держава. 2020. № 1. С. 97 – 101.

Полоус О.В., Лукій Т.Р. Конкурентоспроможності людського капіталу в умовах глобалізації. Причорноморські економічні студії. 2018. Випуск 35. С. 16 – 21. 5.pdf (bses.in.ua).

Грішнова О., Шпирко О. Конкурентоспроможність персоналу підприємства: критерії визначення та показники вимірювання. Україна: аспекти праці. 2004. № 3. С. 3 – 9.

Зак Ю.А. Кластерный анализ для многомерных объектов в условиях нечетких данных. System Research & Information Technologies. 2021. № 2. С. 18 – 34. DOI: 10.20535/SRIT.2308-8893.2021.2.02

Шусторович А.М. Об адекватных парных мерах сходства в задачах распознавания образов с разнородными признаками. Вопросы обработки информации при проектировании систем. Новосибирск: ИМ СО АН ССС Р, 1977. С. 147 – 152.

Миркин Б.Г. Анализ качественных признаков и структур. М.: Статистика, 1980. 319 с.

І нформатика в Україні: становлення, розвиток, проблеми. /Сергієнко І.В.; за заг. ред. Капітонова Ю.В., Лебедєва Т.Т. Київ: НАН України, Ін-т кібернетики імені В.М. Глушкова. Київ: Наукова думка, 1999. 354 с.

Boluki Sh., Dadanech S.Z., Quin X., Dougherty E.R. Optimal clustering with missing values. BMC Bioinformatics. 20 (12):321. 2019. https://doi.org/10.1186/s12859-019-2832-3

Wagstaff K. Clustering with Missing Values: No Imputation Required. In: Classification, Clustering, and Data Mining Applications. Proceedings of the Meeting of the International Federation of Classification Societies (IFCS). Illinois Institute of Technology, Chicago, 15–18 July 2004. P. 649–658. 2004. https://doi.org/10.1007/978-3-642-17103-1_61

Hulianytskyi L., Riasna I. On Fuzzy Similarity Relations for Heterogeneous Fuzzy Sets. II International Scientific Symposium «Intelligent Solutions» IntSol-2021, September 28–30, 2021, Kyiv-Uzhhorod, Ukraine IntSol, 48 – 59. CEUR-WS.org/vol–3018/Paper_5.pdf

Hussain A., Ullah K., Alshahrani M.N., Yang M.S., Pamucar D. Novel Aczel-Alsina operators for Pythagorean fuzzy sets with application in multi-attribute decision making. Symmetry. 2022. 14. P. 940. https://doi.org/10.3390/sym14050940

Liu D., Chen X., Peng D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J.Intell. Syst. 2019. 34. P. 1572 – 1587. https://doi.org/10.1002/int.22108

Peng X., Liu L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019. 34. P. 1795 – 1834. https://doi.org/10.1002/int.22115

Yang M.S., Ali Z., Mahmood T. Three-way decisions based on q-rung orthopair fuzzy 2-tuple linguistic sets with generalized Maclaurin symmetric mean operators. Mathematics. 2021. 9. P. 1387. DOI:10.3390/math9121387

Joshi B.P., Gegov A. Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems. Int. J. Intell. Syst. 2020. 35. P. 125 – 149. https://doi.org/10.1002/int.22203

Орлов А.И. Объекты нечисловой природы. Заводская лаборатория. 1995. 61. № 3. С. 41 – 52.

Kukush A., Senko I. Prediction in polynomial errors-in-variables models. Modern Stochastics: Theory and Applications. 7(2). P. 203 – 219. 2020. https://doi.org/10.15559/20-VMSTA154

Sen’ko I. O. The asymptotic normality of an adjusted least squares estimator in a multivariate vector errorsin- variables regression model. Theor. Probability and Math. Statist. 88. P. 175 – 190. 2014. https://doi.org/10.1090/ S0094-9000-2014-00929-1

Simon H.A., Newell A. Heuristic problems solving: the next advance in operation research. Operation Reserch. 1958. v. 6. № 1. P. 1 – 10. https://www.jstor.org/stable/167397

Нечеткие множества в моделях управления и искусственного интеллекта: /под ред. Д.А. Поспелова. М.: Наука, 1986. 312 с.

Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning. Information Sciences. 1975. v. 8. P. 199 – 249. https://doi.org/10.1016/0020-0255(75)90036-5

Published

2023-04-10