MODELING OF SUPPLY CHAINS BY THE PORT OPERATOR UNDER THE CONDITIONS OF MULTIMODALITY
DOI:
https://doi.org/10.35546/kntu2078-4481.2022.3.14Keywords:
supply chain, port operator, multimodality, multi-stage transport task, optimization.Abstract
In this work, a static economic-mathematical model of the cargo supply chain from the points of departure to the points of consumption is built and analyzed. The model takes into account the number and capacity of transshipment points (for example, cargo terminals of port operators) in which the process of transport interaction takes place, as well as the possibility of using different vehicles on the sections of the connection between the departure/destination and transshipment points. The classical transport problem and its modification with one set of transshipment points are considered as a basis for modeling. The built model describes the coordination of the main participants of the supply chain in order to achieve the minimum total costs for the delivery of goods. The necessary conditions of admissibility of the described optimization model are formulated. The proposed model reflects certain realities of managing logistics processes and can be used in the practical activities of enterprises, including the activities of stevedoring companies. The possibilities of adapting the built model for a specific supply chain are taken into account, taking into account the capacity of the elements of the transport network under consideration (for example, the loads of road and/or railway transport chains, the capacity and configuration of the storage areas of the cargo terminal), the impossibility of using a certain type of transport on each section of the route ( for example, the need to use sea transport if the departure/destination or transshipment points are seaport terminals). The article also presents a numerical illustration of the constructed optimization model for a specific case where the port operator makes the planning decision. It is shown that the proposed approach can be used for other configurations of modeling and optimization of supply chains, for example, for the case when all cargo passes gradually through several multiple transfer points. The possibility of further generalization of the studied model to the case of random demand at destinations is indicated. The actualization of further integration of processes and functions occurring in supply chains is substantiated.
References
SteadieSeifi M. et al. Multimodal freight transportation planning: A literature review //European journal of operational research. – 2014. – Т. 233. – №. 1. – С. 1-15. doi: 10.1016/j.ejor.2013.06.055
Ursavas E., Zhu S. X. Optimal policies for the berth allocation problem under stochastic nature //European Journal of Operational Research. – 2016. – Т. 255. – №. 2. – С. 380-387. doi: 10.1016/j.ejor.2016.04.029
Li G., Hu D., Su L. The model of location for single allocation multimodal hub under capacity constraints // Procedia-Social and Behavioral Sciences. – 2013. – Т. 96. – С. 351-359. doi: 10.1016/j.sbspro.2013.08.042
Postan M. Y., Kurudzhi Y. V. Modeling the influence of transport units movements irregularity on storage level of cargo at warehouse //Acta Systemica. – 2012. – Т. 12. – №. 1. – С. 31-36. ISSN 1813-4769
Крук Ю. Ю., Постан М. Я. Разработка и анализ динамической модели оптимизации взаимодействия транспортных потоков на портовом терминале //Восточно-Европейский журнал передовых технологий. – 2016. – Т. 1. – №. 3 (79). – С. 19-23. doi: 10.15587/1729-4061.2016.61154
Yan B. et al. Transshipment operations optimization of sea-rail intermodal container in seaport rail terminals // Computers & Industrial Engineering. – 2020. – Т. 141. – С. 106296. doi.org/10.1016/j.cie.2020.106296
Jaehn F., Rieder J., Wiehl A. Minimizing delays in a shunting yard //OR Spectrum. – 2015. – Т. 37. – №. 2. – С. 407-429. doi.org/10.1007/s00291-015-0391-1
Valentyna Romakh, Victoria Vasylieva. The impotence of port management in ensuring the sustainable development of the transport system. //Science and Education for Sustainable Developmen: Monograph / edited Aleksander Ostenda, Valentyna Smachylo. - Katowice: Publishing House of University of Technology, 2022. P. 157-168. ISBN 987-83-963977- 2-0, DOI:10.54264/M005
Ромах В. Л. Формирований эффективного множества альтернав в решении задач кластерной оптимизации //Вісник Східноукраїнського національного університету імені Володимира Даля. – 2019. – №. 3. – С. 151-155. ICV 2017: 48.35, ISSN 1998-7927
Zhang Q., Yang H., Zhang L. Multi-objective Model on Connection Time Optimization in Sea-rail Intermodal Transport //GSTF Journal of Engineering Technology (JET). – 2014. – Т. 3. – №. 1. P. 12–118. DOI: 10.5176/2251-3701_3.1.118
Постан, М. Я. Экономико-математические модели смешанных перевозок /М. Я. Постан. – Одесса: Астропринт, 2006. – 376 с.
Кузько Н. Є. Моделювання логістичного ланцюга поставок //Вісник Національного університету" Львівська політехніка. – 2005. – №. 526-С. – С. 94-98.
Куруджи Ю.В. Оптимизация планов закупки и доставки товара в логистической сети при случайном спросе // Глобальні та національні проблеми економіки: електронне наукове фахове видання. – 2017. – № 18. – С. 603-607.
Incoterms rules – URL: https://iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/. (дата звернення 20 листопада 2022).
Tariff Calculator. – URL: https://www.zim.com/tools/tariff-calculator. (дата звернення 20 листопада 2022).
Міжнародний залізничний транзитний тариф (МТТ). – URL: https://uz.gov.ua/cargo_ transportation/ legal_ documents/ mignarodni_taryfy/mtt/. (дата звернення 20 листопада 2022).
Український експорт – як отримати вихід до моря. Онлайн-конференція. Railexpo. Newport. URL: https://railexpoua.com/konferentsiia/. (дата звернення 23 листопада 2022).