EVALUATION OF THE FACADE PHOTOELECTRIC SYSTEMS ENERGY PRODUCTION IN THE CLIMATE CONDITIONS OF KHERSON
DOI:
https://doi.org/10.35546/kntu2078-4481.2024.4.10Keywords:
photovoltaic facade, solar radiation, surface azimuth, electrical energy, specific outputAbstract
In this paper the prospects of photovoltaic facades integrated into the building structure (BIPV-facades) when used in the climatic conditions of Kherson are considered. The method for calculation of solar radiation inflow to the vertical surfaces of the buildings facades is given, and the approaches to the evaluation of BIPV facades energy production are described. Calculation of the solar radiation inflow to the vertical surfaces of building facades depending on their spatial orientation relative to the south direction showed that deviations in the facade orientation by azimuth angles of up to 30º to the east or west are quite acceptable and do not lead to significant reduction in the annual solar radiation inflow. This fact allows not so hard requirements to the spatial orientation of buildings with BIPV facades. Evaluation of the electricity generation by BIPV facade depending on its spatial orientation demonstrated that the system with photovoltaic panels on the southern facade of the building is capable to generate of electrical energy with annual amount of about 108 kWh/m2, while the system with panels on the eastern or western facades is capable to provide about 84 kWh/m2, which indicates the feasibility of photovoltaic systems integration not only to the southern, but also to the eastern and western facades of the building. Calculation of the facade BIPV system energy output, carried out on the example of a four-floor apartment building located in Kherson, showed the opportunity to generate electricity not only for own needs, but also to supply overplus energy to the centralized power grid. This fact indicates the feasibility of implementing systems with BIPV facades in the climatic conditions of Kherson.
References
Відновлювані джерела енергії. За заг. ред. С.О. Кудрі. К.: Інститут відновлюваної енергетики НАНУ, 2020. 392 с.
Атлас енергетичного потенціалу відновлюваних джерел енергії України. За заг. ред. С.О. Кудрі. К.: Інститут відновлюваної енергетики НАН України, 2020. 82 с.
Відновлювана енергетика на Херсонщині розвивається шаленими темпами. Херсонська обласна державна адміністрація [Електронний ресурс]. Режим доступу: https://khoda.gov.ua/v%D1%96dnovljuvana-energetika-nahersonshhin%D1%96-rozviva%D1%94tsja-shalenimi-tempami (дата звернення: 24.10.24). Назва з екрану.
Kurian J., Karthi L. Building integrated photovoltaics – an overview. Sustainability, Agri, Food and Environmental Research. Vol. 10. 2022. 9 p. DOI: 10.7770/safer-V10N1-art2495.
Eifferd P., Kiss G.J. Building-Integrated Photovoltaics for Commercial and Institutional Structures: A Sourcebook for Architects and Engineers. NREL, 2000. 89 р.
James T., Goodrich A., Woodhouse M., Margolis R., Ong S. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices. NREL, 2011. 39 р.
Bonomo P. Frontini F. Building Integrated Photovoltaics (BIPV): Analysis of the Technological Transfer Process and Innovation Dynamics in the Swiss Building Sector. Buildings. Vol. 14 (6) : 1510. 2024. 22 p. DOI: 10.3390/buildings14061510.
Guedouh M.S., Khadraoui M.A., Youcef K., Belmahdi H.S. Energy Efficiency in Building Based on the BIPV Panels System Used as a Double Skin Envelop in a Hot Arid Region. 5th International Conference on Applied Engineering and Natural Sciences. July 10-12. 2023. Konya. Turkey. P. 183-187. DOI: 10.59287/icaens.989.
Duffie J.A., Beckman W.A. Solar Engineering of Thermal Processes. Hoboken: John Wiley & Sons, Inc., 2013. 910 p.
POWER. Data Access Viewer [Electronic resource]. Access mode: https://power.larc.nasa.gov/data-access-viewer/(last access: 24.10.2024). Title from the screen.