APPLICATION OF ELECTROSPINNING AND CENTRIFUGAL FIBRE FORMATION TECHNOLOGIES TO CREATE HIGHLY SOLUBLE SOLID DISPERSED SYSTEMS CONTAINING ACTIVE PHARMACEUTICAL INGREDIENTS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.1.1.2

Keywords:

solid dispersed systems, centrifugal fibre formation, electrospinning, active pharmaceutical ingredient, methods of increasing solubility, polymers, polyvinylpyrrolidone

Abstract

This paper presents the results of a comprehensive analysis of scientific and literary sources devoted to the characterisation of electrospinning and centrifugal fibre formation methods, as well as trends in their use for the production of highly soluble solid dispersed systems (SDSs) containing active pharmaceutical ingredients (APIs). Low solubility is one of the key problems that limit the bioavailability of a significant number of APIs, so the development of effective strategies to improve it is an important area of modern chemical and pharmaceutical research. The technology of forming solid dispersed systems, in which APIs are dispersed in a polymer matrix, is considered a promising approach to solving this problem. Currently, there is a growing research interest in the methods of forming solid dispersed systems in the form of fibres. It has been established that the technologies of electrospinning and centrifugal fibre formation are gaining popularity in scientific circles and industry. Electrospinning involves the use of an electrostatic field to draw a polymer solution or melt into sub-micron or nanometre diameter fibres. This method provides the ability to control the morphological characteristics of the fibres, but has certain limitations due to the scale of the process and the need for high voltages. The centrifugal fibre forming process uses centrifugal force to generate fibres from polymer solutions or melts containing APIs. This method is characterised by potential advantages such as high productivity, reduced energy consumption and the use of relatively simple equipment. According to the analysis of scientific and literary sources, it has been proved that both methods are now widely used in the creation of fibrous SDS with improved solubility of APIs of various pharmacological groups. The choice between electrospinning and centrifugal fibre formation depends on the specific requirements for the morphology of the SDS fibres, their mechanical properties, as well as on the production scale and economic considerations.

References

Bessarabov V., Kostiuk V., Lyzhniuk V., Lisovyi V., Smishko R., Kuzmina G., Gureyeva S., Goy A. “Green” technology of centrifugal fiber formation of solid dispersed systems of nimesulide: Evaluation of solubility increases and physicochemical characteristics. Sustainable Chemistry and Pharmacy. 2025. Vol. 43. 101913. https://doi.org/10.1016/j.scp.2025.101913

Zhang X., Xing H., Zhao Y., Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics. 2018. Vol. 10, № 3. 74. https://doi.org/10.3390/pharmaceutics10030074

Patel K., Shah S., Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2022. Vol. 30, № 1. P. 165-189. https://doi.org/10.1007/s40199-022-00440-0

Kumari L., Choudhari Y., Patel P., Gupta G. D., Singh D., Rosenholm J. M., Bansal K. K., Kurmi B. D. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel, Switzerland). 2023. Vol. 13, № 5. 1099. https://doi.org/10.3390/life13051099

Лісовий В. М., Лижнюк В. В., Костюк В. Г., Пащенко І. О., Смішко Р. О., Гой А. М., Повшедна І. О., Іщенко О. В., Яременко В. В., Бессарабов В. І. Технології отримання високорозчинних полімерних композиційних матеріалів з активними фармацевтичними інгредієнтами. Технології та інжиніринг. 2023. Vol. 3, № 14. Р. 26–35. https://doi.org/10.30857/2786-5371.2023.3.3

Zhang J., Guo M., Luo M., Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian journal of pharmaceutical sciences. 2023. Vol. 18, № 4. 100834. https://doi.org/10.1016/ j.ajps.2023.100834

Zare M., Dziemidowicz K., Williams G. R., Ramakrishna S. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials (Basel, Switzerland). 2021. Vol. 11, № 8. 1968. https://doi.org/10.3390/nano11081968

Yu D. G., Li J. J., Williams G. R., Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. Journal of controlled release : official journal of the Controlled Release Society. 2018. № 292. Р. 91–110. https://doi.org/10.1016/j.jconrel.2018.08.016

Duan X., Chen H.-l., Guo C. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. J. Mater Sci: Mater Med. 2022. № 33. 78 https://doi.org/10.1007/s10856-022-06700-4

Marjuban S. M. H., Rahman M., Duza S. S., Ahmed M. B., Patel D. K., Rahman M. S., Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers. 2023. Vol. 15, № 5. 1253. https://doi.org/10.3390/polym15051253

Ahmadi Bonakdar M., Rodrigue D. Electrospinning: Processes, Structures, and Materials. Macromol. 2024. Vol. 4, № 1. Р. 58–103. https://doi.org/10.3390/macromol4010004

Kausar A., Ahmad I. Electrospinning Processing of Polymer/Nanocarbon Nanocomposite Nanofibers–Design, Features, and Technical Compliances. Journal of Composites Science. 2023. Vol. 7, № 7. 290. https://doi.org/10.3390/jcs7070290

Haider A., Haider S., Kang I. K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018. Vol. 11, № 8. Р. 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

Ishchenko O., Plavan V., Valeika V., Koliada M., Liashok I., Budash Y., Bessarabov V. Modified Starch in Composition with Polyvinyl Alcohol as a Basis for Development of the Polymeric Materials for Pharmaceutical Use. Starch‐Stärke, 2022. Vol. 74 № 9–10. 2200062. https://doi.org/10.1002/star.202200062

Kai D., Liow S. S., Loh X. J. Biodegradable polymers for electrospinning: towards biomedical applications. Materials science & engineering. C, Materials for biological applications. 2014. № 45. Р. 659–670. https://doi.org/10.1016/j.msec.2014.04.051

Farhaj S., Conway B. R., Ghori M. U. Nanofibres in Drug Delivery Applications. Fibers. 2023. Vol. 11, № 2. 21. https://doi.org/10.3390/fib11020021

Adeli E. Irbesartan‐loaded electrospun nanofibers‐based PVP K90 for the drug dissolution improvement: Fabrication, in vitro performance assessment, and in vivo evaluation. Journal of Applied Polymer Science. 2015. Vol. 132, № 27. https://doi.org/10.1002/app.42212

Łyszczarz E., Sosna O., Srebro J., Rezka A., Majda D., Mendyk A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. Nanomaterials. 2024. Vol. 14, № 19. 1569. https://doi.org/10.3390/nano14191569

Nagy Z. K., Balogh A., Vajna B., Farkas A., Patyi G., Kramarics A., Marosi G. Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution. Journal of pharmaceutical sciences. 2012. Vol. 101, № 1. Р. 322–332. https://doi.org/10.1002/jps.22731

El-Newehy M. H., Al-Deyab S. S., Kenawy E.-R., Abdel-Megeed A. Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers and Polymers. 2012. Vol. 13, № 6. Р. 709–717. https://doi.org/10.1007/s12221-012-0709-4

Ren X., Hu Y., Chang L., Xu S., Mei, X., Chen Z. Electrospinning of antibacterial and anti-inflammatory Ag@ hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regenerative biomaterials. 2022. № 9. rbac012. https://doi.org/10.1093/rb/rbac012

Kase S., Matsuo T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. Journal of Polymer Science Part A: General Papers. 1965. Vol. 3, № 7. Р. 2541–2554. https://doi.org/10.1002/pol.1965.100030712

Voelker H., Zettler H. D., Fath W., Berbner H. Production of fibers by centrifugal spinning : Patent No. US 5494616A United States. Application US08/239,311; Application 06.05.1994; Publication 27.02.1996.

Weitz R. T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer nanofibers via nozzle-free centrifugal spinning. Nano letters. 2008. Vol. 8, № 4. Р. 1187–1191. https://doi.org/10.1021/nl080124q

Sarkar K., Gomez C., Zambrano S., Ramirez M., De Hoyos E., Vasquez H., Lozano K. Electrospinning to forcespinning™. Materials today. 2010. Vol. 13, № 11. P. 12–14. https://doi.org/10.1016/S1369-7021(10)70199-1

Brako F., Nkwo M. Leveraging artificial intelligence for better translation of fibre-based pharmaceutical systems into real-world benefits. Pharmaceutical Development and Technology. 2024. Vol. 29, № 8. Р. 793–804. https://doi.org/10.1080/10837450.2024.2395422

Rogalski J. J., Bastiaansen C. W. M., Peijs T. Rotary jet spinning review – a potential high yield future for polymer nanofibers. Nanocomposites. 2017. Vol. 3, № 4. Р. 97–121. https://doi.org/10.1080/20550324.2017.1393919

Guo Q., Ye P., Zhang Z., Xu Q. Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials (Basel, Switzerland). 2023. Vol. 13, № 23. 3057. https://doi.org/10.3390/nano13233057

Stojanovska E., Canbay E., Pampal E. S., Calisir M. D., Agma O., Polat Y., Simsek R., Gundogdu N. A. S., Akgul Y., Kilic A. A review on non-electro nanofibre spinning techniques. RSC advances. 2016. Vol. 6 № 87. Р. 83783–83801. https://doi.org/10.1039/C6RA16986D

Mary L. A., Senthilram T., Suganya S., Nagarajan L., Venugopal J., Ramakrishna S., Giri Dev V. R. Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle. Express Polym. Lett. 2013. Vol. 7, № 3. Р. 238–248. https://doi.org/10.3144/expresspolymlett.2013.22

Bitay E., Gergely A. L., Kántor J., Szabó Z. I. Evaluation of Lapatinib-Loaded Microfibers Prepared by Centrifugal Spinning. Polymers. 2022. Vol. 14, № 24. 5557. https://doi.org/10.3390/polym14245557

Bitay E., Gergely A. L., Szabó Z. I. Optimization and Production of Aceclofenac-Loaded Microfiber Solid Dispersion by Centrifugal Spinning. Pharmaceutics. 2023. Vol. 15, № 9. 2256. https://doi.org/10.3390/pharmaceutics15092256

Bitay E., Gergely A. L., Szabó Z. I. One-Step Preparation of Fiber-Based Chlorzoxazone Solid Dispersion by Centrifugal Spinning. Polymers. 2023. Vol. 16, № 1. 123. https://doi.org/10.3390/polym16010123

Li X., Lu Y., Hou T., Zhou J., Yang B. Centrifugally spun ultrafine starch/PEO fibres as release formulation for poorly water‐soluble drugs. Micro & Nano Letters. 2018. Vol. 13, № 12. Р. 1688-1692. https://doi.org/10.1049/mnl.2018.5267

Marano S., Barker S. A., Raimi-Abraham B. T., Missaghi S., Rajabi-Siahboomi A., Craig D. Q. M. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2016. № 103. Р. 84–94. https://doi.org/10.1016/j.ejpb.2016.03.021

Marano S., Ghimire M., Missaghi S., Rajabi-Siahboomi A., Craig D. Q. M., Barker S. A. Development of Robust Tablet Formulations with Enhanced Drug Dissolution Profiles from Centrifugally-Spun Micro-Fibrous Solid Dispersions of Itraconazole, a BCS Class II Drug. Pharmaceutics. 2023. Vol. 15, № 3. 802. https://doi.org/10.3390/pharmaceutics15030802

Nasir S., Hussain A., Abbas N., Bukhari N. I., Hussain F., Arshad M. S. Improved bioavailability of oxcarbazepine, a BCS class II drug by centrifugal melt spinning: In-vitro and in-vivo implications. International journal of pharmaceutics. 2021. № 604. 120775. https://doi.org/10.1016/j.ijpharm.2021.120775

Hussain A., Hussain F., Arshad M. S., Abbas N., Nasir S., Mudassir J., Mahmood F., Ali E. Ibuprofen-loaded centrifugally spun microfibers for quick relief of inflammation in rats. Drug development and industrial pharmacy. 2021. Vol. 47, № 11. Р. 1786–1793. https://doi.org/10.1080/03639045.2022.2059500

Bessarabov V., Lisovyi V., Lyzhniuk V., Kostiuk V., Smishko R., Yaremenko V., Goy A., Derkach T., Kuzmina G., Gureyeva S. Development and characterisation of polymeric solid dispersed systems of hesperidin, obtained by centrifugal fibre formation. Heliyon. 2025. Vol. 11, № 4. e42702. https://doi.org/10.1016/j.heliyon.2025.e42702

Published

2025-02-25