QUIPMENT FOR CAVITATION HYDROGENATION OF HEAVY PETROLEUM PRODUCTS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.1.1.4Keywords:
refining of heavy petroleum products, cavitation hydrogenation, heavy petroleum products, ultrasonic tubular cavitator, hydrocarbon splitting, fractional distillation, petroleum refining, ultrasonic, cavitation, petroleum refiningAbstract
The article highlights the stages of creating a setup for cavitation hydrogenation of heavy petroleum products based on an ultrasonic tubular cavitator. This setup ensures the efficient processing of heavy petroleum products, including fuel oils and paraffin fractions, achieving 100 % marketable products within several cycles. This allows for reduced energy consumption and increased yields of light fractions, such as gasoline and diesel. A key feature of the technology is the concentration of ultrasonic energy in the central part of the cylindrical cavitation chamber, which promotes the breaking of molecular bonds and the effective cracking of hydrocarbon molecules. The proposed solution reduces the environmental impact and improves the economic performance of the processing operation. An analysis of the shortcomings of existing methods, such as catalytic cracking, thermochemical methods, and dewatering with subsequent burial of dry residues, emphasizes the advantages of the cavitation method. A system for fractional distillation of liquids was also developed, enabling the separation of petroleum product components (gasoline, kerosene, diesel) under laboratory conditions, ensuring the ability to adjust process parameters in real-time. The methodology for creating the setup is based on technologies utilizing ultrasonic energy and cavitation processes. This ensures high efficiency in the cracking of hydrocarbon molecules, even for heavy petroleum products. The principles of ultrasonic cracking are described, along with hydraulic schemes and design features of the setup. The application of this technology will help address the challenges posed by limited traditional oil resources and allows for optimizing the processing of heavy petroleum products from both ecological and economic perspectives. Special attention is given to the prospects of process optimization through regulating the supply of hydrogen gas, the duration of ultrasonic cavitation exposure, and controlling pressure and temperature to maximize the yield of light fractions from the treated petroleum product.
References
Suas, F., Safri, A., & Benmouna, A. (2021). Review on rheology of heavy crude oil for pipeline transportation. Oil Research, 6, 116–136. https://doi.org/10.1016/j.ptlrs.2020.11.001
Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). Review of recent technological advances for upgrading heavy oils and residues. Fuel, 86, 1216–1231. https://doi.org/10.1016/j.fuel.2007.01.013
Топільницький, П. І., Романчук, В. В., Ярмола, Т. В., Зінченко, Д. В. (2020). Фізико-хімічні властивості важких нафт Яблунівського родовища з високим вмістом сірки. Вісник НУ «Львівська політехніка»: Хімія, технологія речовин та їх застосування, 3, 75–82. https://doi.org/10.23939/ctas2020.01.075
Prasad, S. K., Kakati, A., & Sangwai, J. S. (2020). Rheology of heavy crude oil and asphaltene-polymer composite blends. In S. Thomas, C. Sarathchandran, & N. Chandran (Eds.), Rheology of polymer blends and nanocomposites (pp. 161–192). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816957-5.00008-2
Meyer, R. F., & Attanasi, E. D. (2003). Heavy oil and natural bitumen – Strategic petroleum resources. USGS Fact Sheet, 3. https://doi.org/10.3133/fs0700
Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31, 571–590. https://doi.org/10.1590/0104-6632.20140313s00001853
Саранчук, В. І., Іляшов, М. О., Ошовський, В. В., & Білецький, В. С. (2008). Хімія і фізика горючих копалин. Донецьк : Східний видавничий дім.
Sun, J., Yu, H., Yin, Z., Jiang, L., Wang, L., Hu, S., & Zhou, R. (2023). Simulation and optimization process of rich gas compression and absorption stabilization of the fluid catalytic cracking unit. Processes, 11(7), 2140. https://doi.org/10.3390/pr11072140
Білецький, В. С., Бойко, В. С., & Букін, С. Л. (2007). Мала гірнича енциклопедія, т. 2. Донецьк : Донбас.
Dufour, J., Serrano, D. P., Gálvez, J. L., Moreno, J., & García, C. (2011). Syngas from hydrocarbon liquids via supercritical water gasification. Applied Catalysis B: Environmental, 108–109, 40–49. https://doi.org/10.1016/j.apcatb.2011.07.036
Durak, H. (2023). Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery. Processes, 11(7), 2092. https://doi.org/10.3390/pr11072092
Склабінський, В. І., Ляпощенко, О. О., & Артюхов, А. Є. (2011). Технологічні основи переробки нафти і газу. Суми : Сумський державний університет.
Wang, J., Huang, J., Cao, J., & Fu, L. (2019). Challenges and advances in the dewatering of oil sludge: A review. Fuel, 252, 813–825. https://doi.org/10.1016/j.fuel.2019.04.118
Zeng, G., Zhang, Y., Huang, G., Yu, M., & Fang, W. (2007). Treatment and recycling of oily sludge. Journal of Hazardous Materials, 151(2–3), 254–261. https://doi.org/10.1016/j.jhazmat.2007.02.020
Franco, C., Pinto, F., Gulyurtlu, I., & Cabrita, I. (2003). The study of the oxidation process of coal and biomass blends using TG and FTIR. Fuel, 82(15–17), 1955–1961. https://doi.org/10.1016/S0016-2361(03)00147-6
Шевчук, В. Я., Чеботко, К. О., & Розгуляєв, В. М. (2001). Біотехнологія отримання органо-мінеральних добрив із вторинної сировини. Київ : ІСД МО.
Liu, J., Wu, Y., Chen, S., & Li, L. (2014). Techno-economic analysis of oil sludge treatment by pyrolysis and dewatering. Energy Conversion and Management, 88, 944–951. https://doi.org/10.1016/j.enconman.2014.10.003
Petroleum refining. (2024). Encyclopaedia Britannica. Retrieved from https://www.britannica.com/technology/petroleum-refining (accessed June 5, 2024).
Войтович, О. В. (2014). Ультразвукова установка для гідрокрекінгу вуглеводнів (UA92137U). Retrieved from https://patents.google.com/patent/UA92137U/en
Гришко, І. А., Новосад, А. А., & Луговський, О. Ф. (2014). Дослідження робочої зони проточного трубчастого кавітатора з високою інтенсивністю ультразвукових коливань. Промислова гідравліка і пневматика, 2, 9–15.
Луговський, О., Зілінський, А., Шульга, А., Лавриненков, А., Гришко, І., & Берник, І. (2020). Експериментальне дослідження стійкості конструкційних матеріалів до кавітаційної ерозії. Механіка та передові технології, 3(90), 29–33.
Randall, J., Espinoza, R. L. S., Lewandowski, S. L., Freeman, D., Ragsdale, R., & Thomas, N. (2017). Organic chemistry with Vernier. Beaverton, OR: Vernier Software & Technology. Retrieved from https://www.vernier.com/product/organic-chemistry-with-vernier






