DESIGN IMPLEMENTATION OF TEST STANDS FOR PHASE CHANGE THERMAL ENERGY STORAGE SYSTEMS FOR PRE-START PREPARATION OF INTERNAL COMBUSTION ENGINES IN AUTOMOBILES

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.1.1.11

Keywords:

heat accumulator, internal combustion engine, heat exchanger, road transport

Abstract

This study examines the design features of test stands for evaluating thermal energy storage systems used to improve the starting performance of internal combustion engines (ICEs) in automotive transport. The starting characteristics of engines, especially in low-temperature conditions, significantly affect the vehicle’s operational efficiency, fuel economy, and reduction of harmful emissions. One potential way to improve starting performance is by using thermal energy storage devices that provide preheating of the coolant and other engine components, which greatly reduces the negative impact of low temperatures on engine operation. To assess the effectiveness of such technologies and study their impact on the vehicle’s technical parameters, specialized test stands are required to model various operating conditions and conduct tests in a controlled environment. One of the main tasks is to develop stand designs that ensure not only measurement accuracy and reliability but are also adaptable to different types of thermal energy storage systems and internal combustion engines. An important aspect is the creation of conditions that closely mimic real-life situations to accurately determine the impact of thermal storage systems on engine performance during startup. Testing should involve different types of coolants used in automotive engine systems, which will allow for the identification of optimal conditions for both the engines themselves and the thermal energy storage systems, particularly during various heating stages. Studying the design features of test stands for evaluating thermal energy storage systems enables the development of more efficient engine starting methods, which positively affect fuel consumption reduction, harmful emission reduction, and increase the energy efficiency and economic viability of automotive transport usage.

References

Wang G., Dannemand M., Chao Xu, Englmair G., Furbo S., Fan J. (2021) Thermal characteristics of a long-term heat storage unit with sodium acetate trihydrate. Applied Thermal Engineering. 187. P. 133–147. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116563

Solomon L, Zheng Y, Tuzla K, Neti S, Oztekin A. (2018) Analysis of an encapsulated phase change material based energy storage system for high temperature applications. International Journal of Energy Research. 42 (7). P. 2518–2535.

Kenisarin M, Mahkamov K. (2016) Passive thermal control in residential buildings using phase change materials. Renew Sustain Energy Rev. 55. Р. 371–398. DOI: https://doi.org/10.1016/j.rser.2015.10.128

Sarbu I, Dorca A. (2019) Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int J Energy Res. 43. P. 29–64. DOI: https://doi.org/10.1002/er.4196

Zhang H, Baeyens J, Caceres G, 5. Degreve J, Lv Y. (2016) Thermal energy storage: recent developments and practical aspects. Progress in Energy and Combustion Science. 53. P. 1–40. DOI: https://doi.org/10.1016/j.pecs.2015.10.003

Wang M. Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating / Mingyu Wang, Timothy Craig, and Edward Wolfe //Journal Volume, Detroit, Michigan, United States of America, Conference. 2017. P. 2–8. DOI: https://doi.org/10.4271/2017-01-0183

Belik S. (2017) Thermal Energy Storage Systems: Power-to-Heat Concepts in Solid Media Storage for High Storage Densities / Sergej Belik, Volker Dreißigacker, Mila Dieterich and Werner Kraft //Journal of Traffic and Transportation Engineering. 5. P. 285–294. DOI: https://doi.org/10.17265/2328-2142/2017.06.001

Клюєв О. І., Русанов С. А., Аппазов Е. С., Луняка К. В., Коновалов Д. В., Мацків Б. М. Тепловий акумулятор системи передпускового прогріву двигуна внутрішнього згорання. Патент на корисну модель № 137780 від 11.11.2019. Бюл. № 21.

Pyhtya V. A. (2010) Experimental studies of the engine preheating system with a thermal battery, Visnyk SNU im. Volodymyra Dalia [Bulletin of the Volodymyr Dahl SNU], № 6(148). P. 246–251.

Аппазов Е. С. Моделювання гідродинамічних та теплових процесів при передпусковій підготовці автомобільних двигунів / Е. С. Аппазов, О. І. Клюєв, С. А. Русанов // Науковий вісник Херсонської державної морської академії: науковий журнал. – Херсон : Вид-во ХДМА, 2014. № 1(10). С. 131–136.

Дмитрієв Д. О., Аппазов Е. С., Русанов С. А., Клюєв О. І. Моделювання процесу розігріву двигуна з тепловим акумулятором при передпусковій підготовці // Вісник Хмельницького національного університету, № 5, 2015, С. 54–58.

Луняка К. В., Клюєв О. І., Русанов С. А., Клюєва О. О. Дослідження роботи теплового акумулятора системи передпускового прогріву двигуна внутрішнього згоряння. Теплофізика та теплоенергетика. 2020 т. 42, № 3. С. 76–81.

Published

2025-02-25