INTEGRATION OF THERMAL ENGINEERING PROCESSES INTO THE DESIGN OF ENERGY-EFFICIENT MECHANICAL ENGINEERING SYSTEMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.1.1.24

Keywords:

heat engineering processes, energy efficiency, thermal insulation, automation, heat exchangers, machinebuilding systems, reduction of heat losses

Abstract

The article analyses modern approaches to the design of mechanical engineering systems about thermal engineering processes. This is due to the need to improve energy efficiency and reduce environmental impact. The rising cost of energy resources explains the study’s relevance, the tightening of environmental standards, and the need to improve industrial systems to ensure their compliance with the requirements of sustainable development. It has been established that traditional approaches to designing mechanical engineering systems do not consider dynamic operating conditions, which causes significant heat losses and reduces equipment efficiency. The study aimsstudy aims to identify the main factors that affect the energy efficiency of mechanical engineering systems and develop recommendations for implementing integrated thermal engineering solutions to reduce energy losses and increase productivity. The study used methods of analysing modern approaches to the design of mechanical engineering systems, identifying important factors affecting energy efficiency, and experimental studies using a typical heat exchanger. The impact of pipeline insulation and automation of pumping equipment was assessed. The theoretical generalisation of the results obtained contributed to formulating practical recommendations. The study results confirm that pipeline insulation reduces heat losses by up to 20 %. At the same time, the introduction of automated pump control systems can reduce energy consumption by 10–15 %. It was found that heat exchange characteristics of materials, geometry of heat exchangers and operating modes of pumping equipment have the most significant impact on energy efficiency. Recommendations for the modernisation of systems have been developed, including the use of modern insulation materials, improvement of heat exchanger designs and introduction of process automation. The conclusions substantiate the feasibility of implementing integrated thermal engineering solutions to improve the energy efficiency of machine-building systems. Prospects for further research include the development of adaptive models for analysing thermal processes in real time, the creation of new materials with improved thermal insulation properties, and the improvement of process control automation. These areas will help increase the efficiency of engineering systems and ensure their compliance with the requirements of sustainable development.

References

Волощук В. А. Впровадження енергоефективних рішень із використанням місцевих та відновлювальних джерел енергії при теплозабезпеченні навчальних закладів в умовах України. Вісник Національного технічного університету «Харківський політехнічний інститут». 2015. № 15. С. 156–165. URL: https://repository.kpi.kharkov.ua/items/9a764dee-81a1-44f8-9751-5c6c09a1ec0b (дата звернення: 21.12.2024).

Андренко П. М., Дмитрієнко О. В. Динамічний синтез мехатронного модуля руху. Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. 2014. Вип. 12. № 1055. С. 157–163. URL: https://core.ac.uk/download/pdf/50577304.pdf (дата звернення: 21.12.2024).

Abdelaoui F. Z. E., Jabri A., Barkany A. E. Optimization techniques for energy efficiency in machining processes – a review. International Journal of Advanced Manufacturing Technology. 2023. Vol. 125. P. 2967–3001. DOI: https://doi.org/10.1007/s00170-023-10927-y (date of access: 21.12.2024).

Zhou X., Xu X., Ouyang X., Huang J. Convective meta-thermal concentration for ultrahigh efficient Stirling engine with waste heat and cold utilization. arXiv preprint. arXiv:2306.07813. 2023. URL: https://arxiv.org/abs/2306.07813 (date of access: 21.12.2024).

Schwarzmayr P., Birkelbach F., Walter H., Hofmann R. Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study. arXiv preprint. arXiv:2301.01071. 2023. URL: https://arxiv.org/abs/2301.01071 (date of access: 21.12.2024).

Vohra, M., Sharma, M., Kumar, S. Numerical and Analytical Investigation of Automotive Exhaust Gas Waste Heat Recovery Module Using Thermoelectric Generator. In: Kumar, R., Pandey, A. K., Sharma, R. K., Norkey, G. (Eds.). Recent Trends in Thermal Engineering. Singapore: Springer, 2022. P. 23–31. DOI: https://doi.org/10.1007/978-981-16-3132-0_3 (date of access: 21.12.2024).

Salehin, S., Ehsan, M. M., Faysal, S. R., Islam, A. K. M. S. Utilization of Nanofluid in Various Clean Energy and Energy Efficiency Applications. In: Chowdhury, A. A., Hassan, N. M. (Eds.). Application of Thermo-fluid Processes in Energy Systems. Singapore: Springer, 2018. P. 3–33. DOI: https://doi.org/10.1007/978-981-10-0697-5_2 (date of access: 21.12.2024).

Saha, S. C., Gu, Y. T., Khan, M. M. K. Heat Transfer Enhancement in a Baffled Attic-Shaped Space. In: Khan, M. M. K., Chowdhury, A. A., Hassan, N. M. S. (Eds.). Application of Thermo-fluid Processes in Energy Systems: Key Issues and Recent Developments for a Sustainable Future. Singapore: Springer, 2017. P. 157–172. DOI: https://doi.org/10.1007/978-981-10-0697-5_8 (date of access: 21.12.2024).

Grote K.-H., Hefazi H. Springer handbook of mechanical engineering. Springer Nature. 2021. P. 5–30. URL: https://books.google.com.ua/books?hl=uk&lr=&id=upQoEAAAQBAJ (date of access: 21.12.2024).

Bramerdorfer G., Tapia J. A., Pyrhönen J. J., Cavagnino A. Modern Electrical Machine Design Optimization: Techniques, Trends, and Best Practices. IEEE Transactions on Industrial Electronics. 2018. Vol. 65, no. 10. P. 7672–7684. DOI: https://doi.org/10.1109/TIE.2018.2801805 (date of access: 21.12.2024).

Atomode D. Optimizing energy efficiency in mechanical systems: Innovations and applications. Journal of Emerging Technologies and Innovative Research. 2023. Vol. 11, no. 5. P. 458–464. URL: https://www.jetir.org/papers/JETIR2405G63.pdf (date of access: 21.12.2024).

Talebjadi B., et al. Energy simulation and variable analysis of refining process in thermo-mechanical pulp mill using machine learning approach. Mathematical and Computer Modelling of Dynamical Systems. 2021. Vol. 27, no. 1. P. 562–585. DOI: https://doi.org/10.1080/13873954.2021.1990967 (date of access: 21.12.2024).

Ba K., Fayçal B. N. Improved Energy Efficiency of Mixed Convection Heating Process in Eccentric Annulus. Advances in Mechanical Engineering. 2021. Vol. 13, no. 8. DOI: https://doi.org/10.1177/16878140211039150 (date of access: 21.12.2024).

Dincer I., Rosen M. A., Ahmadi P. Optimization of energy systems. John Wiley & Sons. 2017. P. 13–25. URL: https://books.google.com.ua/books?hl=uk&lr=&id=UD_CDgAAQBAJ (date of access: 21.12.2024).

Shove E. What is wrong with energy efficiency? Building Research & Information. 2017. Vol. 46, no. 7. P. 779–789. DOI: https://doi.org/10.1080/09613218.2017.1361746 (date of access: 21.12.2024).

Published

2025-02-25