DEVELOPMENT OF HYBRID NEURAL NETWORK MODELS FOR FORECASTING IN INTELLIGENT SYSTEMS
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.1.2.30Keywords:
machine learning, optimisation algorithms, adaptive models, predictive analytics, deep learning, intelligent data processingAbstract
The paper investigates the problem of improving forecasting accuracy in intelligent systems by integrating hybrid neural network models. The relevance of the work is due to the need to develop effective forecasting methods that ensure the stability of results and adaptability to changing conditions. The study aims to create a hybrid neural network forecasting model that combines different artificial neural network architectures to improve the accuracy of data analysis, noise resistance, and flexibility in the face of dynamic changes.The research methods are based on mathematical modelling, analysis of modern neural network architectures and comparative evaluation of their effectiveness. Deep learning approaches with a combination of convolutional and recurrent neural networks and optimisation algorithms are used to improve performance and reduce computational costs. Based on the analysis, a hybrid forecasting model that integrates attention mechanisms and adaptive parameter tuning algorithms is proposed, providing higher accuracy in handling complex data dependencies.The study’s results confirm that the proposed model provides better generalisability than traditional approaches.It has been proved that combining convolutional and recurrent architectures with optimisation algorithms improves forecasting accuracy and helps reduce sensitivity to changes in input data. The necessity of applying compression algorithms and adaptive parameter tuning to reduce the computational load without losing performance is substantiated.The practical value of the work lies in creating recommendations for adapting the proposed hybrid model to real conditions in the financial sector, medical diagnostics, and cybersecurity systems.Prospects for further research are focused on improving the mechanisms of adaptive parameter tuning, increasing the interpretability of results and optimising computational costs, which will help expand the possibilities of using hybrid neural network models in complex analytical tasks.
References
Kandel A., Langholz G. Hybrid architectures for intelligent systems. CRC Press. 2020. URL: https://books.google.com.ua/books?hl=uk&lr=&id=bUAHEAAAQBAJ (date of access:07.03.2025).
Guo X., Zhao Q., Zheng D., Ning Y., Gao Y. A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price. Energy Reports. 2020. Vol. 6. № 1. P. 1046–1053. DOI: https://doi.org/10.1016/j.egyr.2020.11.078 (date of access:07.03.2025).
Halbouni T. S., Gunawan M. H., Habaebi M., Halbouni M., Kartiwi M., Ahmad R. CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System. IEEE Access. 2022. Vol. 10. № 1. P. 99837–99849.
DOI: https://doi.org/10.1109/ACCESS.2022.3206425 (date of access:07.03.2025).
Hopgood A. A. Intelligent systems for engineers and scientists: a practical guide to artificial intelligence. CRC Press. 2021. DOI: https://doi.org/10.1201/9781003226277 (date of access:07.03.2025).
Garud K. S., Jayaraj S., Lee M. Y. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. International Journal of Energy Research. 2021. Vol. 45. № 1. P. 6–35. DOI: https://doi.org/10.1002/er.5608 (date of access:07.03.2025).
Haq A. U., Li J. P., Memon M. H., Nazir S., Sun R. A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms. Mobile Information Systems. 2018. Vol. 2018. № 1. Article 3860146. DOI: https://doi.org/10.1155/2018/3860146 (date of access:07.03.2025).
Koopialipoor M., Jahed Armaghani D., Hedayat A. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing. 2019. Vol. 23. № 1. P. 5913–5929. DOI: https://doi.org/10.1007/s00500-018-3253-3 (date of access:07.03.2025).
Кравчук Я., Ніколаєнко Д., Воробйов І. Інноваційні методи інтеграції Інтернету речей у комп’ютерні техно- логії. Наука і техніка сьогодні. 2024. Вип. 11. № 39. DOI: https://doi.org/10.52058/2786-6025-2024-11(39)-898-913 (дата звернення: 07.03.2025).
Khan M. A. HCRNNIDS: Hybrid convolutional recurrent neural network-based network intrusion detection system. Processes. 2021. Vol. 9. № 5. Article 834. DOI: https://doi.org/10.3390/pr9050834 (date of access:07.03.2025).
Chyzhmar K., Dniprov O., Korotiuk O., Shapoval R., Sydorenko O. State Information Security as a Challenge of Information and Computer Technology Development. Journal of Security and Sustainability Issues. 2020. Vol. 9. № 3. P. 819–828. DOI: https://doi.org/10.9770/jssi.2020.9.3(8) (date of access:07.03.2025).
Костюк Ю. Розробка інтелектуальних компонентів інформаційних систем. Challenges and Issues of Modern Science. 2023. Вип. 1, № 1. P. 337–342. URL: https://cims.fti.dp.ua/j/article/view/64 (дата звернення: 07.03.2025).
Dellermann D., Ebel P., Söllner M., Leimeister J. M. Hybrid Intelligence. Business & Information Systems Engineering. 2019. Vol. 61. № 6. P. 637–643. DOI: https://doi.org/10.1007/s12599-019-00595-2 (date of access:07.03.2025).
Dastres R., Soori M. Artificial neural network systems. International Journal of Imaging and Robotics. 2021. Vol. 21. № 2. P. 13–25. URL: https://hal.science/hal-03349542/ (date of access:07.03.2025).
Wu L., Kong C., Hao X., Chen W. A short‐term load forecasting method based on GRU‐CNN hybrid neural network model. Mathematical Problems in Engineering. 2020. Vol. 2020. № 1. Article 1428104. DOI: https://doi.org/ 10.1155/2020/1428104 (date of access:07.03.2025).
De Campos Souza P. V. Fuzzy neural networks and neuro-fuzzy networks: A review of the main techniques and applications used in the literature. Applied Soft Computing. 2020. Vol. 92. № 1. Article 106275. DOI: https://doi.org/ 10.1016/j.asoc.2020.106275 (date of access:07.03.2025).






