ANALYSIS OF MODERN APPROACHES TO QUALITY ASSURANCE OF COMPLEX PARTS IN ROBOTIC PRODUCTION SYSTEMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.2.1.4

Keywords:

robotic manufacturing systems, complex parts, intelligent machining, offline programming, touch control, adaptive control

Abstract

The article is devoted to the study of modern approaches to ensuring the quality of processing of complex parts using robotic manufacturing systems, focusing on the innovative process of intelligent robotic molding. The article considered the integration of sensor systems, artificial intelligence and force feedback for adaptive processing of parts in real time, which allows achieving high geometric accuracy without additional calibration stages. In the context of the transition to intelligent manufacturing, where the need for high-precision processing of complex parts for the aviation, space and defense industries is growing, robotic manufacturing systems are gaining key importance due to their ability to provide flexibility, adaptability and high quality processing. Offline programming methods and artificial intelligence algorithms were used to plan trajectories and correlate forces and geometry. The aim of the study is to study intelligent processes of robotic molding for processing complex parts, which provides an adaptive response to the variability of material properties. The scientific novelty lies in the justification of the use of the intelligent iRoRoFo process, which integrates roll-based straightening into the forming cycle, using force feedback to determine the geometry in real time without optical measurements. A sensor solution based on artificial intelligence algorithms is proposed to process complex dependencies between force data and geometric parameters, which is innovative for robotic systems. The developed iRoRoFo process demonstrated the ability to adaptively adjust the geometry of parts in real time, ensuring compliance with design parameters. The use of force feedback eliminated the need for complex optical systems, and the integration of artificial intelligence provided an accurate correlation between the measured forces and the resulting geometry.The results confirm the promising approach for processing complex-profile parts, opening up opportunities for scaling in current industrial conditions.

References

Громовий О. А., Виговський Г. М., Балицька Н. О. Шляхи удосконалення процесу обробки плоских поверхонь деталей фрезеруванням. Технічна інженерія. 2020. № 2(86). С. 48–53. DOI: https://doi.org/10.26642/ten- 2020-2(86)-48-53

Єпіфанова І. М. Вплив використання сучасних технологій на ефективність діяльності машинобудівних підприємств країни. Економіка та суспільство. 2025. № 72. DOI: https://doi.org/10.32782/2524-0072/2025-72-7

Македон В. В., Байлова О. О. Планування і організація впровадження цифрових технологій в діяльність промислових підприємств. Науковий вісник Херсонського державного університету. Серія «Економічні науки». 2023. Випуск 47. C. 16-26. DOI: 10.32999/ksu2307-8030/2023-47-3

Македон В. В., Холод О. Г., Ярмоленко Л. І. Модель оцінки конкурентоспроможності високотехнологіч- них підприємств на засадах формування ключових компетенцій. Академічний огляд. 2023. № 2(59). C. 75–89. DOI: 10.32342/2074-5354-2023-2-59-5

Новіков Ф. В. Технологічне забезпечення високоякісної та високоточної механічної обробки : монографія. Дніпро : ЛІРА, 2024. 460 с.

Яковенко І. Є., Пермяков О. А., Ільїн Д. О., Басова Є. В., Горбулик В. І. До проблем автоматизації дільниці механічної обробки деталей з полістиролу. Вісник Національного технічного університету «ХПІ». Серія: Технології в машинобудуванні. 2024. № 1(9). С. 30–39. DOI: https://doi.org/10.20998/2079-004X.2024.1(9).03

Abdolmohammadi T., Richter-Trummer V., Ahrens A., Richter K., Alibrahim A., Werner M. Virtual sensor-based geometry prediction of complex sheet metal parts formed by robotic rollforming. Robotics. 2023. Vol. 12, no. 2. p. 33. https://doi.org/10.3390/robotics12020033

Campilho R. D. S. G., Silva F. J. G. Industrial process improvement by automation and robotics. Machines. 2023. Vol. 11, no. 11. p. 1011. https://doi.org/10.3390/machines11111011

Cooper I., Nicholson I., Yan D., Wright B., Liaptsis D., Mineo C. Development of a fast inspection system for complex composite structures – The IntACom project. Proceedings of the 5th International Symposium on NDT in Aerospace. 2013. November 13–15. Singapore. https://www.ndt.net/article/aero2013/content/papers/45_Cooper.pdf

Jiao S., Wang H., Xia L., Zhang S. Research on trajectory planning of 6-DOF cutting-robot in machining complex surface. MATEC Web of Conferences. 2018. Vol. 220. p. 06003. https://doi.org/10.1051/matecconf/201822006003

Licardo J. T., Domjan M., Orehovački T. Intelligent robotics–A systematic review of emerging technologies and trends. Electronics. 2024. Vol. 13, no. 3. p. 542. https://doi.org/10.3390/electronics13030542

Makedon V., Myachin V., Plakhotnik O., Fisunenko N., Mykhailenko O. Construction of a model for evaluating the efficiency of technology transfer process based on a fuzzy logic approach. Eastern-European Journal of Enterprise Technologies. 2024. no 2(13(128)). p. 47–57. https://doi.org/10.15587/1729-4061.2024.300796

Papavasileiou A., Michalos G., Makris S. Quality control in manufacturing – review and challenges on robotic applications. International Journal of Computer Integrated Manufacturing. 2024. Vol. 38, no. 1. p. 79–115. https://doi.org/10.1080/0951192X.2024.2314789

Ryalat M., Franco E., Elmoaqet H., Almtireen N., Al-Refai G. The integration of advanced mechatronic systems into Industry 4.0 for smart manufacturing. Sustainability. 2024. Vol. 16, no. 19. p. 8504. https://doi.org/10.3390/su16198504

Schulz A., Queißer J. F., Ishihara H., Asada M. Transfer learning of complex motor skills on the humanoid robot Affetto. Proceedings of the 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). 2018. p. 72–77. https://doi.org/10.1109/DEVLRN.2018.8761031

Siciliano B., Sciavicco L., Villani L., Oriolo G. Robotics: Modelling, Planning and Control. London: Springer, 2010. 181 p. https://people.disim.univaq.it/~costanzo.manes/EDU_stuff/Robotics_Modelling,%20Planning%20and%20Control_Sciavicco_extract.pdf

Younis H., Bwaliez O. M., Garibeh M. H., Sundarakani B. Empirical study of robotic systems implementation to corporate performance in manufacturing sector. International Journal of Productivity and Performance Management. 2024. Advance online publication. https://doi.org/10.1108/IJPPM-02-2024-0070

Zhen M., Lizhe Q., Yunquan S., Min X. Research on robotic measurement path planning for complex surface workpieces. Journal of Physics: Conference Series. 2021. Vol. 1820, no. 1. p. 012072. https://doi.org/10.1088/1742-6596/1820/1/012072

Zhu Z., Tang X., Chen C., Peng F., Yan R., Zhou L., Li Z., Wu J. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends. Chinese Journal of Aeronautics. 2021. Vol. 35, no. 2. p. 22–46. https://doi.org/10.1016/j.cja.2020.12.030

Published

2025-06-05