OPTIMIZATION OF FUEL ASSEMBLY CONFIGURATIONS IN VVER-1000 REACTORS CONSIDERING FUEL ROD CLADDING DAMAGE

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.2.1.22

Keywords:

adaptive control, energy efficiency, modular architecture, sensor technologies, braking stability, wear resistance

Abstract

Relevance of the study is due to the growing need to improve the approaches to configuring fuel assembly layouts in VVER-1000 reactors under increased operational loads, with an emphasis on fuel efficiency and the mitigation of fuel rod cladding damage risks.The aim of the article is to propose a discrete model and conceptual optimization method for rearranging fuel assemblies in the VVER-1000 reactor core, taking into account several critical parameters simultaneously – such as thermal load distribution, neutron flux uniformity, mechanical stress on cladding, and predicted fuel burnup.Research methods are based on a logic-analytical approach that includes a review of relevant scientific literature, synthesis of core performance criteria, and the development of a structural framework for a future discrete model using heuristic modeling principles. The study outlines the necessary input parameters and constraints, and presents a conceptual structure for implementing an optimization method– potentially using evolutionary algorithms such as genetic approaches– without focusing on direct algorithmic realization. Research results allow for the justification of a multicriteria approach to optimizing core configurations, addressing key interdependent indicators related to reactor safety, cladding durability, and energy generation uniformity. The main components of the model are identified, offering a foundation for further formal development and testing.Scientific novelty lies in the formulation of a discrete optimization model that integrates variable operational conditions, evolving fuel characteristics, and conflicting performance objectives into a unified decision-making framework for core design.Conclusions confirm the feasibility of developing a multicriteria model for optimizing fuel assembly arrangements, enabling reductions in localized overheating, improved burnup distribution, and enhanced cladding performance over the fuel cycle.Prospects for further research include mathematical formalization of the proposed model, creation of an algorithmic prototype using genetic methods, and validation of solutions using real-world fuel cycle data.

References

Pelykh S. N., Maksimov M. V., Parks G. T. A method for VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup. Nuclear Engineering and Design. 2013. Vol. 257, № 1. P. 53–60. DOI: https://doi.org/10.1016/j.nucengdes.2012.12.022

Пелих С., Фролов М., Наливайко А., Чжоу Х. Автоматизована система керування властивостями ядерного палива ВВЕР-1000 з урахуванням параметра пошкодження оболонок твелів. Праці Одеського політехнічного уні- верситету. 2018. Вип. 1(54). С. 46–50. DOI: https://doi.org/10.15276/opu.1.54.2018.06

Pelykh S. N. The cladding damage parameter under normal operating conditions in VVER fuel design: Resolving contradictions. Nuclear Engineering and Design. 2021. Vol. 379, № 1. Article 111198. DOI: https://doi.org/10.1016/ j.nucengdes.2021.111198

Abdel-Latif S. H., Wasfy S. A., Refaey A. M. A study of VVER-1000 fuel rod integrity during LOFA. Progress in Nuclear Energy. 2023. Vol. 159, № 1. Article 104650. DOI: https://doi.org/10.1016/j.pnucene.2023.104650

Mohsen M. Y. M., Abdel-Rahman M. A. E. Detailed safety assessment for the VVER-1000 fuel assembly. International Journal of Nuclear Energy Science and Technology. 2021. Vol. 15, № 1. P. 36–60. DOI: https://doi.org/ 10.1504/IJNEST.2021.120138

Mohsen M. Y. M., Abdel-Rahman M. A. E., Galahom A. A. Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials. Annals of Nuclear Energy. 2021. Vol. 159, № 1. Article 108330. DOI: https://doi.org/10.1016/j.anucene.2021.108330

Yassin K. M., Hassan M. H., Ghoneim M. M., Elkolil M. S., Alyan A., Agamy S. A. Multiphysics simulation of VVER-1200 fuel performance during normal operating conditions. Nuclear Science and Techniques. 2023. Vol. 34, № 1. Article 28. DOI: https://doi.org/10.1007/s41365-023-01172-9

Safarzadeh O., Qarani-Tamai M. Full-core reactor physics analysis for accident tolerant cladding in a VVER-1000 reactor. Annals of Nuclear Energy. 2021. Vol. 155, № 1. Article 108163. DOI: https://doi.org/10.1016/ j.anucene.2021.108163

Luthfi W., Adrial H., Khakim A. Study on neutronic behavior of VVER-1000 fuel assembly with duplex fuel rod design. Nuclear Engineering and Design. 2024. Vol. 422, № 1. Article 113168. DOI: https://doi.org/10.1016/ j.nucengdes.2024.113168

Nazari T., Rabiee A., Kazeminejad H. Numerical investigation of the modal characteristics for a VVER- 1000 fuel assembly. Nuclear Engineering and Design. 2019. Vol. 345, № 1. P. 1–6. DOI: https://doi.org/10.1016/ j.nucengdes.2019.02.004

Vosoughi J., Vosoughi N., Salehi A. A. Development of a calculation model to simulate the effect of bowing of the VVER-1000 reactor fuel assembly on power distribution. Annals of Nuclear Energy. 2023. Vol. 181, № 1. Article 109535. DOI: https://doi.org/10.1016/j.anucene.2022.109535

Tran H. N., Hoang V. K., Liem P. H., Hoang H. T. Neutronics design of VVER-1000 fuel assembly with burnable poison particles. Nuclear Engineering and Technology. 2019. Vol. 51, № 7. P. 1729–1737. DOI: https://doi.org/10.1016/ j.net.2019.05.026

Flores A. Y., Rzehulka M., Mazzini G. Influence of mixed core in the radionuclides releases and hydrogen production for VVER-1000. Nuclear Engineering and Design. 2024. Vol. 417, № 1. Article 112858. DOI: https://doi.org/ 10.1016/j.nucengdes.2023.112858

Ahmed M. T., Shelley A. Annular fuel for VVER-1000 reactor: Moderation impact on neutronic behavior. Progress in Nuclear Energy. 2023. Vol. 165, № 1. Article 104907. DOI: https://doi.org/10.1016/j.pnucene.2023.104907

Nasiri S., Ansarifar G. R. Neutronic design and analysis of the accident-tolerant fuel (ATF) application to VVER- 1000 nuclear reactor as well as evaluation of dynamic parameters. Nuclear Engineering and Design. 2025. Vol. 432, № 1. Article 113814. DOI: https://doi.org/10.1016/j.nucengdes.2024.113814

Published

2025-06-05