SYNTHESIS OF CU-TIO2 COMPOSITE PHOTOCATALYTIC FILMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.2.1.31

Keywords:

methanesulfonate solution, composite coatings, titanium dioxide, copper, photocatalysis, structure, photodestruction, electrodeposition

Abstract

Electrodeposition of composite coatings based on copper is considered a promising direction for the creation of modern multifunctional materials. One of the key areas of their use is the purification systems of gas emissions and wastewater.Organic pollutants, typical for the textile, food and paint industries, are effectively photodestructed with the participation of catalysts. Most often, semiconductor oxide materials, in particular titanium dioxide, are used as photocatalysts. The most promising area of application of composites containing TiO2 is the photocatalytic destruction of pollutants. Titanium dioxide is well known as an n-type semiconductor with a relatively high recombination rate of photoinduced charge carriers. The properties of titanium dioxide are a function of the crystal structure, size and morphology of nanoparticles.The design features of wastewater treatment equipment require the fixation of TiO2 particles in a rigid matrix. The optimal solution is the application of composite films by electrodeposition, for example, Cu–TiO2. The composition of the solution plays a decisive role in the formation of the properties of composites and the selection of technological parameters of the process. To obtain Cu–TiO2 composites, a methanesulfonate solution was used in the work, which is characterized by high solubility of salts and electrochemical indifference. It was found that the photocatalytic properties of Cu–TiO2 composite films obtained from a methanesulfonate solution depend on the amount of titanium dioxide included in the films.It was shown that an increase in the TiO2 content in the films from 0.1 to 1.3 wt.% is accompanied by an increase in the efficiency of photodestruction of the dye from 6 to 15.5 %. The proposed solution composition demonstrates high efficiency for the synthesis of composite films of photocatalysts intended for the purification of wastewater from organic pollutants.

References

Aruna S. T., Muniprakash M., Grips V. W. Effect of titania particles preparation on the properties of Ni–TiO2 electrodeposited composite coatings. Journal of Applied Electrochemistry. Vol. 43(8). 2013. Р. 805–815.

Mohajeri S., Dolati A., Ghorbani M. The influence of pulse plating parameters on the electrocodeposition of Ni–TiO2 nanocomposite single layer and multilayer structures on copper substrates. Surface and Coatings Technology. Vol. 262. 2015. Р. 173–183.

Walsh F. C., Low C. T. J., Bello J. O. Influence of surfactants on electrodeposition of a Ni-nanoparticulate SiC composite coating. Transactions of the Institute of Metal Finishing. Vol. 93(13). 2015. Р. 147–156.

Яворська Н. М., Підгайчук С. Я., Дробот О. С. Оцінка зносостійкості композиційних електрохімічних покриттів на основі нікелю з нановключеннями нітридів. Вісник Хмельницького національного університету. Технічні науки. Т.5. 2015. С. 33–37.

Aliofkhazraei M., Ahangarani S., Rouhaghdam A. S. Effect of the duty cycle of pulsed current on nanocomposite layers formed by pulsed electrodeposition. Rare metals. Vol. 29(2). 2010. Р. 209–213.

Wang L., Li Y., Yin X., Wang Y., Lu L., Song A., Shao G. Comparison of three nickel-based carbon composite catalysts for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy. Vol. 42(36). 2017. Р. 22655–22662.

Mahlambi M. M., Mishra A. K., Mishra S. B., Raichur A. M., Mamba B. B., Krause R. W. Layer-by-layer self- assembled metal-ion-(Ag-, Co-, Ni-, and Pd-) doped TiO2 nanoparticles: synthesis, characterisation, and visible light degradation of Rhodamine B. Journal of Nanomaterials. Vol. 2012. 2012. P. 1–12.

Fan L., Long J., Gu Q., Huang H., Lin H., Wang X. Single-site nickel-grafted anatase TiO2 for hydrogen production: toward understanding the nature of visible-light photocatalysis. Journal of Catalysis. Vol. 320. 2014. P. 147–159.

Liu Q., Ding D., Ning C., Wang X. Cobalt-phosphate/Ni-doped TiO2 nanotubes composite photoanodes for solar water oxidation. Materials Science and Engineering: B. Vol. 202. 2015. P. 54–60.

Gupta S., Tripathi M. A review on the synthesis of TiO2 nanoparticles by solution route. Open Chemistry. Vol. 10. 2012. P. 279–294.

Oskam G., Nellore A., Penn R. L., Searson P. C. The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. The Journal of Physical Chemistry B. Vol. 107. 2003. P. 1734–1738.

Banfield, J. Thermodynamic analysis of phase stability of nanocrystalline titania. Journal of Materials Chemistry. Vol. 8. 1998. P. 2073–2076.

Zhang H., Banfield J. F. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. American Mineralogist. Vol. 84. 1999. P. 528–535.

Ranade M. R., Navrotsky A., Zhang H. Z., Banfield J. F., Elder S. H., Zaban A., Whitfield H. J. Energetics of nanocrystalline TiO2. Proceedings of the National Academy of Sciences. Vol. 99. 2002. P. 6476–6481.

Zhang H., Banfield J. F. Size dependence of the kinetic rate constant for phase transformation in TiO2 nanoparticles. Chemistry of materials. Vol. 17. 2005. P. 3421–3425.

Gupta V. K., Jain R., Nayak A., Agarwal S., Shrivastava M. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C. Vol. 31. 2011. P. 1062–1067.

Davis R. J., Gainer J. L., O’Neal G., Wu I. W. Photocatalytic decolorization of wastewater dyes. Water Environment Research. Vol. 66. 1994. P. 50–53.

Ochiai T., Fujishima A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and photobiology C: Photochemistry reviews. Vol. 13. 2012. P. 247–262.

Hashimoto K., Irie H., Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics. Vol. 44. 2005. P. 8269–8285.

Nakata K., Ochiai T., Murakami T., Fujishima A. Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochimica Acta. Vol. 84. 2012. P. 103–111.

Spanou S., Kontos A. I., Siokou A., Kontos A. G., Vaenas N., Falaras P., Pavlatou E. A. Self cleaning behaviour of Ni/nano-TiO2 metal matrix composites. Electrochimica Acta. Vol. 105. 2013. P. 324–332.

Walsh F. C., Ponce de Leon C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Transactions of the IMF. Vol. 92. 2014. P. 83–98.

Zeng Y. B., Qu N. S., Hu X. Y. Preparation and Characterization of Electrodeposited NiCeO2 Nanocomposite Coatings with High Current Density. International journal of electrochemical science. Vol. 9. 2014. P. 8145–54.

Zhang Z., Jiang C., Wu X., Ma N. Effect of particle concentration on property of electrodeposited Ni-ZrC nanocomposites. Materials Research Innovations. Vol. 18. 2014. P. 146–151.

Garcia I., Fransaer J., Celis J. P. Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surface and Coatings Technology. Vol. 148. 2001. P. 171–178.

Ebrahimi F., Ahmed Z. The effect of current density on properties of electrodeposited nanocrystalline nickel. Journal of Applied Electrochemistry. Vol. 33. 2003. P. 733–739.

Li Y., Wu K., Zhitomirsky I. Electrodeposition of composite zinc oxide–chitosan films. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 356(1–3). 2010. P. 63–70.

Schrand A. M., Flens S. A. C., Shenderov O. A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences. Vol. 34(1). 2009. P. 18–74.

Bercot, P., Pena-Munoz E., Pagetti J. Electrolytic composite Ni-PTFE coatings: an adaptation of Guglielmi’s model for the phenomena of incorporation. Surface and Coatings Technology. Vol. 157(2). 2002. Р. 282–289.

Published

2025-06-05