INVARIANT AUTOMATIC CONTROL SYSTEM FOR OIL ROAD HEATER
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.3.1.7Keywords:
oil heater, automatic control system, invariance, PI/PD controller, process qualityAbstract
The analysis of the structural diagram of the oil heater showed that there is a direct channel – the supply of gas to the combustion chamber – the oil temperature at the heater outlet, and disturbance channels – the oil temperature at the heater inlet and the change in the flow rate of oil entering the heater. Two schemes for stabilizing the outlet temperature of the heater are proposed – a cascade-connected system and a system with PI/PD controllers in the direct control loop. The cascade-connected automatic temperature stabilization system at the heater outlet consists of two loops – the main and auxiliary. The main loop is formed by the direct channel “fuel gas–outlet temperature”, which includes a PI controller. To build the auxiliary loop, the channel “natural gas–flue gas temperature” is used, which has much lower inertia than the main loop. The system with PI/PD controllers has a PI controller in its structure that directly acts on the actuator, and a PD controller, which is included in the negative feedback loop of the controlled object. A comparative analysis of the two schemes showed that the second option provides better control quality indicators compared to the first option. Therefore, the second option was chosen as the main one. Since the automatic control system is subject to disturbances, an invariant automatic control system with respect to the oil temperature and changes in oil flow rate at the heater inlet is proposed. Based on the principle of dual-channeling, the structural diagram of the invariant system was synthesized, and the transfer functions of the compensator were determined. To verify the correctness of the obtained solutions, a simulation model of the invariant automatic temperature stabilization system at the heater outlet was created in the MatLab/Simulink environment. When disturbances change as functions of time, the simulation results showed that the compensators completely “eliminate” the time-varying disturbances.
References
Rahmati A. R., Reiszadeh M. An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations. Applied Thermal Engineering. 2018. Vol. 134. P. 107–117. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.111
Delouei A. A., Naeimi H., Sajjadi H., Atashafrooz M., Imanparast M., Chamkha A. J. An active approach to heat transfer enhancement in indirect heaters of city gate stations: An experimental modeling. Applied Thermal Engineering. 2024. Vol. 237. P. 121795. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121795
Rashidmardani A., Hamzehei M. Effect of various parameters on indirect fired water bath heaters’ efficiency to reduce energy losses. International Journal of Science and Engineering Investigations. 2013. Vol. 2, No. 12. P. 17–24. URL: https://www.ijsei.com/papers/ijsei-21213-04.pdf
Khanmohammadi S., Shahsavar A. Thermodynamic assessment and proposal of new configurations of an indirect water bath heater for a City Gate Station (a case study). Energy Equipment and Systems. 2020. Vol. 8, No. 4. P. 349–365. DOI: https://doi.org/10.22059/ees.2020.241292
Mostafavi S. A., Shirazi M. Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption. Energy. 2020. Vol. 212. P. 118390. DOI: https://doi.org/10.1016/j.energy.2020.118390
Ebrahimi-Moghadam A., Deymi-Dashtebayaz M., Jafari H., Niazmand A. Energetic, exergetic, environmental and economic assessment of a novel control system for indirect heaters in natural gas city gate stations. Journal of Thermal Analysis and Calorimetry. 2020. Vol. 141, No. 6. P. 2573–2588. DOI: https://doi.org/10.1007/s10973-020-09413-4
Василенчук М., Горбійчук М., Когутяк М. Синтез лінеаризованих математичних моделей нагрівника з проміжним теплоносієм. Measuring and computing devices in technological processes. 2023. № 3. С. 144–153. DOI: https://doi.org/10.31891/2219-9365-2023-75-17
Горбійчук М., Василенчук М., Когутяк М. Система автоматичного керування процесом нагрівання нафти в шляховому нагрівнику. Measuring and computing devices in technological processes. 2024. № 4. С. 314–331. DOI: https://doi.org/10.31891/2219-9365-2024-80-39
Horbiichuk M. I., Vasylenchuk M. Z., Kohutiak M. I. Analytical studies on dynamic properties of indirect oil heaters. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2024. No. 6. P. 151–157. DOI: https://doi.org/10.33271/nvngu/2024-6/151
Горбійчук М., Василенчук М. Синтез структурної схеми нагрівника нафти як об’єкта автоматичного керування. Вісник Херсонського національного технічного університету. 2023. Т. 4(87). С. 44–52. DOI: https://doi.org/10.35546/kntu2078-4481.2023.4.5
Василенчук М., Горбійчук М. Структурно-параметричний синтез системи автоматичного керування шляховим нагрівником нафти. Herald of Khmelnytskyi National University. Technical Sciences. 2025. Vol. 355, No. 4. P. 112–119. DOI: https://doi.org/10.31891/2307-5732-2025-355-16
Horbiichuk Mykhailo, Vasylenchuk Mykhailo, Yednak Ihor, Lahoida Andrii. Devising a combined method for setting PI/PID controller parameters for oil and gas facilities. Eastern-European Journal of Enterprise Technologies. 2025. Vol. 1, No. 2(133). P. 85–95. DOI: https://doi.org/10.15587/1729-4061.2025.322424
Horbiichuk M. I., Lazoriv N. T., Kohutiak M. I., Manuliak I. Z. Experimental research on muffle furnace dynamic properties. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023. No. 3. P. 144–150. DOI: https://doi.org/10.33271/nvngu/2023-3/144
Горбійчук М., Заячук Я., Когутяк М. Практичні аспекти реалізації коректорів автоматичних систем керування. Measuring and computing devices in technological processes. 2024. № 1. С. 101–110. DOI: https://doi.org/10.31891/2219-9365-2024-77-13







