RESEARCH OF SILICATE SYSTEMS WITH TECHNOGENIC RAW MATERIALS FOR CEMENT PRODUCTION

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.3.1.10

Keywords:

cement, rice husk, fly ash, raw material mixture, crystalline phases, properties

Abstract

Cement production is characterized by high resource intensity and is based on the use of natural raw materials, the deposits of which are exhaustible and non-renewable. This makes the problem of replacing natural raw materials with waste from other industries as man-made raw materials relevant. Silicate systems for the production of cement based on compositions of various natural and man-made raw materials were investigated. As man-made raw materials, high-tonnage waste from the agricultural industry – rice husk and from the heat and power industry – fly ash were used. The work comprehensively used methods of physicochemical analysis of silicates and standardized technological testing of the properties of the binder material: Calculations of the composition of raw material mixtures were carried out using the computer program “RomanCem”. The peculiarities of the chemical and mineralogical composition of rice husk as a source of amorphous silica with increased reactivity and fly ash with an increased content of iron oxides and a developed glass phase are noted. Calculations of the possible concentration of the specified technogenic raw materials in raw material mixtures at given values of the hydraulic and silica moduli of cement were carried out.Based on the analysis of computer calculations, new compositions of the initial raw material mixtures were determined based on the systems limestone-kaolin-rice husk and limestone-rice husk-fly ash with a content of 20.0 to 48.5 wt.% of components of technogenic origin. The features of the phase composition of cement from raw material mixtures based on the studied silicate systems during firing at a maximum temperature of 1100 °C and the possibility of regulating the properties of the mineral binder by varying the developed compositions of the initial mixtures are shown. It is concluded that the assessment of the possibility and degree of effectiveness of using individual varieties of technogenic raw materials as a component of silicate systems should take into account the peculiarities of their aggregate state, chemical and mineralogical composition, and reactivity in the processes of physicochemical transformations in technological cycles. At the same time, scientifically based use of industrial waste makes it possible to comprehensively solve the problems of resource conservation and chemical technology of silicates.

References

Liebau F. (1985). Structural Chemistry of Silicates. Structure, Bonding, and Classification. Berlin, Heidelberg: Springer.

Гречанюк В. (2006). Фізична хімія і хімія силікатів. Київ : Кондор.

Duda, W. H. (1988). Cement Data Book, Volume 3: Raw Material for Cement Production. French & European Pubns. 188 с.

Рунова Р. Ф., Дворкін Л. Й., Дворкін О. Л., Носовський Ю. Л. (2012). В’яжучі речовини. Київ : Основа. 446 с.

Allen, D. T., & Benmanesh, N. (1994). Wastes as Raw Materials. In The Greening of Industrial Ecosystems (pp. 69–89). Washington: National Academy Press. https://www.nap.edu/read/2129/chapter/7

Bhatia, H. S. (2020). A Comprehensive Book on Industrial Waste and Its Management. Delhi (India) : The Readers Paradise. 250 с.

Ramesh, M., Karthic, K. S., Karthikeyan, T., & Kumaravel, A. (2014). Construction materials from industrial wastes – a review of current practices. International Journal of Environmental Research and Development, 4(4), 317–324. https://www.ripublication.com/ijerd_spl/ijerdv4n4spl_08.pdf

Черняк Л. П. (2003). Критерії вибору сировини для сучасного виробництва будівельної кераміки. Будівельні матеріали та вироби, № 1, С. 2–4; № 2, С. 6–8.

Ghosh S. N. (2003). Advances in Cement Technology: Chemistry, Manufacture and Testing. Taylor & Francis. 828 с.

Winter, N. B. (2012). Understanding Cement. WHD Microanalysis Consultants Ltd. 206 с.

Masoumeh Kordi, Naser Farrokhi, Martin I. Pech-Canul, & Asadollah Ahmadikhah. (2024). Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Science, 31(1), 14–32.

Maryoto, A., & Sudibyo, G. H. (2018). Rice husk as an alternative energy for cement production and its effect on the chemical properties of cement. MATEC Web of Conferences, 195, 01009.

Kar, K. K. (2021). Handbook of Fly Ash. Elsevier. 868 с.

Alterary, S. S., & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University, 33(6).

Sun, L., & Gong, K. (2001). Silicon-based materials from rice husks and their applications. Industrial & Engineering Chemistry Research, 40(25), 5861–5877. DOI: 10.1021/ie010284b

Real, C., Alcala, M. D., & Criado, J. M. (1996). Preparation of Silica from Rice Husks. Journal of the American Ceramic Society, 79(8), 2012–2016.

Kou, S., Poon, C., & Chan, D. (2007). Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. Materials in Civil Engineering, 19, 709–717.

Ondova, M., Stevulova, N., & Estokova, A. (2012). The Study of the Properties of Fly Ash Based Concrete Composites with Various Chemical Admixtures. Procedia Engineering, 42, 1863–1872.

ДСТУ Б В.2.7-205:2009. Золи-виносу теплових електростанцій для бетонів. Технічні умови. Київ : Мінрегіонбуд України, 2010. 12 с.

Свідерський, В. А., Черняк, Л. П., Сангінова, О. В., Дорогань, Н. О., Цибенко М.Ю. (2017). Програмне забезпечення технології низькотемпературних в’яжучих матеріалів. Будівельні матеріали та вироби, №1–2(93), 22–24.

ДСТУ Б В.2.7-91-99. В’яжучі мінеральні. Класифікація. Київ : Держбуд України, 1999. 26 с.

Published

2025-11-28