DEVELOPMENT OF A HYBRID INTELLIGENT SYSTEM ARCHITECTURE FOR AUTOMATED CONTROL OF THE NUMERICAL MODELING PROCESS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.2.2.14

Keywords:

hybrid intelligent system, numerical modeling, multilayer structures, transmission spectrum, adaptive algorithms, optical optimization

Abstract

The article presents the architecture of a hybrid intelligent system designed for automated control of the process of numerical modeling of optical properties of multilayer structures. The main goal of the development is to increase the accuracy, stability and computational efficiency in modeling complex physical phenomena in heterogeneous environments. The proposed system combines classical physical and mathematical models (in particular, RCWA) with adaptive grid algorithms, machine learning modules and optimization components based on gradient methods.The architecture is implemented as a modular system that includes a physical core, error estimation, optimization, machine learning modules, as well as a control agent that coordinates the operation of all subsystems. During the modeling, a dynamic change in the discretization parameters is provided depending on the local features of the spectrum – in particular, in the zones of spectral resonances, the grid is automatically condensed, while in stable areas – its rarefaction. This allows achieving high accuracy without excessive load on computing resources. The system also provides a posteriori assessment of the modeling accuracy, which allows to identify areas with potentially high error and adaptively refine the calculation parameters. The results of numerical experiments indicate a reduction in the average deviation from the reference solution to less than 1.2 % compared to more than 4.5 % in the case of using a non-adaptive scheme. A mechanism for generating recommendations in JSON format is also implemented, which suggests optimal geometric configurations of the multilayer structure to enhance the resonant behavior, reduce reflection and improve spectral selectivity. The hybrid system has demonstrated resistance to variations in input parameters and flexibility in application to new physical problems. The proposed architecture opens up prospects for its application in multiphysics problems, integration with cloud platforms and implementation of parallel computing. It can be used in spectroscopy, optical sensor analysis, design of photonic structures and study of thin-film materials. The conclusions drawn confirm the effectiveness of the synergy of classical numerical methods and modern intelligent technologies in high-precision modeling tasks.

References

Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008. 304 p.

Liu, Y., Salemink, H. Photonic crystal-based all-optical on-chip sensor // Optics Express. 2012. Vol. 20, No. 17. P. 19912–19920. DOI: 10.1364/OE.20.019912

Kozubovsky, V. R., Bilak, Y. Y. Some Methods for Determining Pre-Explosive Concentrations of Gas Mixtures // Journal of Applied Spectroscopy. 2022. Vol. 89. P. 107–113. DOI: 10.1007/s10812-022-01332-6

Wang, J., Li, B., Lei, B., Ma, P., Lian, S., Wang, N., Li, X., Lei, S. Design and Application of Mixed Natural Gas Monitoring System Using Artificial Neural Networks // Sensors. 2021. Vol. 21, No. 2. P. 351. DOI: 10.3390/s21020351

Rai, P., Saeed, S., Mishra, S. Harmful gases detection using artificial neural networks of the environment // Indonesian Journal of Electrical Engineering and Computer Science. 2023. Vol. 30, No. 3. P. 1389–1398. DOI: 10.11591/ijeecs.v30.i3.pp1389-1398

Linbo, T., Kolomenskii, A., Schuessler, H., Zhu, F., Xia, J., Zhang, S. Analysis of Gas Mixtures with Broadband Dual Frequency Comb Spectroscopy and Unsupervised Learning Neural Network // Advanced Intelligent Systems. 2023. Vol. 5. DOI: 10.1002/aisy.202300105

Bilak, Yu. Yu. Development of a combined model for analyzing gas mixtures using machine learning methods // Applied Aspects of Information Technology. 2025. Vol. 8, No. 1. P. 24–37. DOI: 10.15276/aait.08.2025.2

Shuaibov, O. K., Minya, E. Y., Hrytsak, R. V., Malinina, A. A., Malinin, A. N. Electrophysical Characteristics Of Gas-Discharge Synthesis Of Thin Films On The Basis Of A Superion Conductor (Ag₂S) In Air // Journal of Pharmaceutics and Pharmacology Research. 2022. Vol. 5, No. 7. DOI: 10.31579/2693-7247/093

Bondar, I. I., Suran, V. V., Minya, O. Y., Shuaibov, O. K., Bilak, Yu. Yu., Shevera, I. V., Malinina, A. O., Krasilinets, V. N. Synthesis of surface structures during laser-stimulated evaporation of a copper sulfate solution in distilled water // Ukrainian Journal of Physics. 2023. Vol. 68, No. 2. P. 138–144. DOI: 10.15407/ujpe68.2.138

Білак, Ю. Ю., Геращенков, Є. О. Багаторівнева декомпозиція для адаптивного чисельного моделювання складних фізичних процесів // Вісник Хмельницького національного університету. Технічні науки. 2025. № 349(2). С. 51–62. DOI: 10.31891/2307-5732-2025-349-7

Yeh, P. Optical Waves in Layered Media. New York : Wiley, 1988. 432 p.

Born, M., Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. 7th ed. London: Cambridge University Press, 1999. DOI: 10.1017/CBO9781139644181

Thomée, V. Galerkin Finite Element Methods for Parabolic Problems. 2nd revised and expanded ed. Berlin : Springer, 2006. DOI: 10.1007/3-540-33122-0

Babuska, I., Rheinboldt, W. C. A Posteriori Error Estimates for the Finite Element Method // International Journal for Numerical Methods in Engineering. 1978. Vol. 12. P. 1597–1615. DOI: 10.1002/nme.1620121010

Zienkiewicz, O. C., Taylor, R. L. The Finite Element Method. 5th ed. Oxford: Butterworth-Heinemann, 2000. 736 p.

Taflove, A., Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2nd ed. Boston: Artech House, 2000. 856 p.

Jin, J. The Finite Element Method in Electromagnetics. 3rd ed. Hoboken, NJ: Wiley, 2014. 720 p.

Li, Y., Jeong, D., Kim, J. Adaptive Mesh Refinement for Simulation of Thin Film Flows // Meccanica. 2014. Vol. 49. P. 2971–2981. DOI: 10.1007/s11012-013-9788-6

MacLeod, H. A. Thin-Film Optical Filters. 4th ed. Boca Raton: CRC Press, 2010. DOI: 10.1201/9781420073034

Cao, H., Wiersig, J. Dielectric Microcavities: Model Systems for Wave Chaos and Non-Hermitian Physics // Reviews of Modern Physics. 2015. Vol. 87. P. 61–111. DOI: 10.1103/RevModPhys.87.61

Raissi, M., Perdikaris, P., Karniadakis, G. E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations // Journal of Computational Physics. 2019. Vol. 378. P. 686–707. DOI: 10.1016/j.jcp.2018.10.045

Karniadakis, G. E., Kevrekidis, Y., Lu, L., Perdikaris, P., Wang, S., Yang, L. Physics-Informed Machine Learning // Nature Reviews Physics. 2021. Vol. 3. P. 422–440. DOI: 10.1038/s42254-021-00314-5

Published

2025-06-05