ANALYSIS OF THE DYNAMIC STRUCTURE OF THE OBJECT
DOI:
https://doi.org/10.35546/kntu2078-4481.2022.2.1Keywords:
black box, unregulated object, phase space, dynamic system, trajectory, dynamic motionAbstract
The article is devoted to the discussion of the problem statement and the scheme of its solution in the simplest version of the analysis of the dynamic structure of an object - selection in the class of dynamic operators D , taken into account in this case by a previously known operator D0 , corresponding to the statistical properties of the registered signal. At the stage of analysis - class selection - it is necessary to solve general issues: according to a priori data about the object under study, we reasonably choose one of the types of operator (functional, differential, integral or integrodifferential). In this case, it is also necessary to take into account the preliminary information obtained from the signal. When studying an unregulated object, it is important that the signals always describe the behavior of the object as a whole and reflect the individual movements of a large number of its microparticles of the same type. An analysis of the structure of an autonomous object based on its set signal is insufficient if only the dynamic dependence on time is taken into account; even the most detailed registration of the steady-state unified solution of the dynamic equation does not allow revealing the structure of the operator D0 in real situations. The unsuitability of the usual black box scheme for studying an unregulated object from a steady signal leads to the need to take into account internal fluctuations in the plant signal equations. Therefore, in the article we confine ourselves to considering autonomous objects, the dynamic equations of which do not explicitly include the time t . A general simple principle for describing a signal is formulated and justified, the properties of which are quantitatively significant and regularly manifest themselves under given observation conditions. According to the main provisions, the properties of the signal are interconnected by some dynamic structure of the object. The study of the statistical properties of the response of a dynamic system to a fluctuation disturbance F t makes it possible to estimate the dynamic characteristics of an unregulated object from a steady signal.
References
Димова Г.О. Методи і моделі упорядкування експериментальної інформації для ідентифікації і прогнозування стану безперервних процесів: монографія / Ганна Олегівна Димова. Херсон: Видавництво ФОП Вишемирський В.С., 2020. 176 с.
Гудзенко Л.И. Некоторые вопросы структуры объекта по установившемуся сигналу. Труды физического института имени П.Н. Лебедева, Т.45. 1969, С. 110–133.
Димова Г.О., Димов В.С. Генерування випадкових процесів динамічними системами. Прикладні питання математичного моделювання. Том 1 № 2. Херсон, 2018. С. 55–64. DOI: 10.32782/2618-0340-2018-2-55-64.
Тихонов А. Н., Гончаровский А. В., Степанов В. В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. М.: Наука, 1983. 200 с.
Димова Г.О., Димов В.С. Проекційні методи дослідження обернених задач лінійних динамічних систем. Прикладні питання математичного моделювання. Том 2 № 1. Херсон, 2019. С. 182–188. DOI: 10.32782/2618-0340-2019-3-17.