PHOTOELECTRIC CONVERTERS. TYPES, EFFICIENCY
DOI:
https://doi.org/10.35546/kntu2078-4481.2024.1.12Keywords:
photovoltaics, photovoltaics, solar cells, power conversion efficiencyAbstract
The article analyzes the types of photovoltaic cells belonging to different generations and technological groups, evaluates their advantages and disadvantages, production features, current efficiency indicators and development prospects, technologies for increasing their efficiency. The current state of the technologies of photoelectric converters and the challenges and opportunities facing researchers and manufacturers are determined. An analysis of the efficiency of photovoltaic systems as the main components of photovoltaics is presented. The main advantages and disadvantages of photovoltaic cells of various types are systematized. The most innovative technologies have been determined, which include double-sided photovoltaic elements, transparent photovoltaic elements, flexible photovoltaic elements, systems for concentrating radiation, and technologies for improving current removal. A patent search was carried out on the specialized database "Inventions (useful models) in Ukraine" using keywords related to the request "solar converters", and it was concluded that 24 percent of patents in this direction, registered in Ukraine, relate to the production process of photovoltaic cells and modules, 48 percent of decisions are devoted to the design and composition of photovoltaic modules and systems, 28 percent to the materials and architecture of photovoltaic elements. It has been established that the technologies of photovoltaic cells and the materials used for their production are constantly being improved. The efforts of manufacturers and researchers are aimed at finding new approaches to increasing the efficiency of solar panels, increasing the amount of energy produced per unit area, reducing its cost, creating optimal work opportunities at different levels of illumination and temperature indicators, expanding the scope of possible application of photovoltaic systems, as well as increasing sustainability to the influence of environmental factors.
References
Хрипунов Г.С. Хрипунова А.А. Історичні передумови та аналіз розвитку фотоелектрики у 50-х роках XX століття. (2015). Сумський історико-архівний журнал. № 24. С. 75–81.
Хрипунова А. Л. (2015). Передумови розвитку наземної фотоелектрики у 70-х рр. ХХ ст. Сторінки історії. Вісник НТУУ "КПІ". № 40. С. 158–167.
Geoffrey K. Ontiri, Lilian L. Amuhaya. (2022). A Review of Emerging Photovoltaic Construction Technologies to Increase Efficiencies in Solar as a Renewable Energy Source. American Scientific Research Journal for Engineering, Technology, and Sciences. Vol. 85, No.1, P 348–369.
Durganjali C. S. et al (2020). Recent Developments and Future Advancements in Solar Panels Technology. Journal of Physics Vol. 1495. P. 012–018. URL: https://doi.org/10.1088/1742-6596/1495/1/012018.
L.P.S.S. Panagoda, R.A.H.T. Sandeepa, W.A.V.T. Perera, D.M.I. Sandunika, S.M.G.T. Siriwardhana, M.K.S.D. Alwis, S.H.S. Dilka. (2023). Advancements In Photovoltaic (Pv) Technology for Solar Energy Generation. Journal of Research Technology & Engineering 4 (30. 30–72).
Goetzberger A. (2003). Photovoltaic materials, history, status and outlook. Material Science and Engineering. № 40. pp. 1–46.
Martin A. Green, Ewan D. Dunlop, Masahiro Yoshita, Nikos Kopidakis, Karsten Bothe, Gerald Siefer, Xiaojing Hao. (2023). Solar cell efficiency tables. Progress in Photovoltaics: Research and Applications. DOI:10.1002/pip.3726. onlinelibrary.wiley.com/doi/full/10.1002/pip.3726
B. Mahadevan, S. Naghibi, F. Kargar and A. Balandin (2019). "Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells". Journal of Carbon Research, vol. 6, no. 1, p. 2.
IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socioeconomic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi.
T. Ibn-Mohammed et al. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews. vol. 80. pp. –-1344.
Kyu-Seok Lee et al. (2010). Analysis of the Current-voltage Curves of a Cu(In,Ga) Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions. Journal of the Optical Society of Korea Vol. 14, No. 4. pp. 321–325. DOI: 10.3807/JOSK.2010.14.4.321
Ballif, Christophe & Haug, Franz-Josef & Boccard, Mathieu & Verlinden, Pierre & Hahn, Giso. (2022). Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials. DOI: 10.1038/s41578-022-00423-2.
Гошовський С. В., Зур'ян А. В. (2015). Методичні засади для оптимальної побудови енергетичних комплексів з використанням відновлюваних джерел енергії. Збірник наукових праць УкрДГРІ. № 4. С. 9–21.
Карпчук Г. Л., Будько В. I. (2023). Аналіз технологій фотоелектричного перетворення сонячного випромінювання на електричну енергію. Відновлювана енергетика. № 2(73). С. 32–38. DOI: https://doi.org/10.36296/1819-8058.2023.2(73).32-38.
M. Biondi et al. (2020). A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. Advanced Materials, vol. 32, no. 17, pр. 1906–1909.
J. Gan and L. Qiao (2020). Colloidal Quantum Dots for Highly Efficient Photovoltaics. Quantum Dot Optoelectronic Devices. pp. 49–82.
N. Mariotti, M. Bonomo, C. Barolo (2020). Emerging Photovoltaic Technologies and Eco-Design, Criticisms and Potential Improvements. Reliability and Ecological Aspects of Photovoltaic Modules. no. 21, pр. 1254–1267.
W. Gu, T. Ma, S. Ahmed, Y. Zhang and J. Peng (2020). A comprehensive review and outlook of bifacial photovoltaic (bPV) technology. Energy Conversion and Management, vol. 223, p. 1132–1143.
H. Park (2021). Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells, Electronic Materials Letters. vol. 17, no. 1, pp. 18–32.
D. Yang et al. (2021). 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy. vol. 84, p. 105934 https://doi.org/10.1016/j.nanoen.2021.105934
W. Song et al. (2020). Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis", Advanced Energy Materials, vol. 10, no. 15, p. 2000136
D. Kim et al. (2020). Flexible and Semi Transparent Ultra-Thin CIGSe Solar Cells Prepared on Ultra-Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications. Advanced Functional Materials, vol. 30, no. 36, p. 2001775, 2020.
W. Song et al. (2020). Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Ecofriendly Acid-Processed Electrodes. iScience, vol. 23, no. 4, p. 100981.
P. Li et al., "Foldable solar cells: Structure design and flexible materials", Nano Select, 2021.
Park, J.E.; Choi, W.S.; Lim, D.G. (2021). Multi-Wire Interconnection of Busbarless Solar Cells with Embedded Electrode Sheet. Energies. 14. 4035. https://doi.org/10.3390/en14134035
Dwivedi Pushpendu, Sudhakar K., Soni Archana. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering. no. 21. https://doi.org/10.1016/j.csite.2020.100674
Sarkın, A.S., Ekren, N. and Sağlam, Ş. (2020). A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Solar Energy. pp. 63–73. doi:10.1016/j.solener.2020.01.084.
Nykyruy L., Yakubiv V., Wisz G., Hryhoruk I., Zapukhlyak Z., Yavorskyi R. (2020). Renewable Energy in Ukraine – Poland Region: Comparison, Critical Analysis and Opportunities. In Renewable Energy-Resources, Challenges and Applications. Intech Open. https://www.intechopen.com/chapters/71838