THE STRUCTURAL TRANSFORMATION TECHNOLOGY OF A TWO-LOOP MULTIDIMENSIONAL TRACKING CONTROL SYSTEM INTO STABILIZATION SYSTEMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.3.6

Keywords:

Stewart platform, two-loop tracking system, stabilization system, quality criterion functionality.

Abstract

The article examines Stewart platforms as a control object. It has been determined that one of the key tasks is to enhance the accuracy of executing programmed movements of the platform’s working surface, which requires addressing several complex issues related to the study of dynamic objects. To simplify the processes of analysis and synthesis for such complex systems as the Stewart platform’s working surface control system movement, a technology is proposed that transforms the structural scheme of a two-loop multidimensional tracking system into a scheme of a multidimensional stabilization system. The development of this technology is the main objective of the research. The technology is based on the general principle of transforming tracking systems into equivalent stabilization systems, taking into account the rules for transforming structural schemes and linear systems. It is designed to convert a multidimensional two-loop tracking system with or without disturbance correction. The errors and the quality criterion functionality of the two-loop tracking system with consideration for disturbance correction have been defined. The significance of polynomial weighting matrices that limit the dispersion of control signals and errors is emphasized separately. These matrices are established based on known characteristics of the stabilization object’s dynamics and the physical meanings of the components of the output coordinate vectors and control signals, which allows for the determination of their normative values and the establishment of relationships between them. Thus, the outcome of the work is the development of a methodology and technology for the structural transformation of the scheme of the Stewart platform’s working surface movement multidimensional tracking control system into a stabilization system scheme, enabling further synthesis and evaluation of the system’s quality. The proposed methodology and technology serve as the foundation for creating an information technology for the analytical design of the Stewart platform’s working surface movement optimal multidimensional tracking control system under random influences, which includes the execution of a series of interrelated operations.

References

Stewart D. A platform with 6 degrees of freedom. Proc. of the Institution of mechanical engineers, 180 (Part 1, 15), 1965. P. 371–386.

Gough, V.E. and Whitehall, S.G., Universal tyre test machine. Proceedings of the FISITA Ninth International Technical Congress. 1962. May. P. 117–137.

Hamid D. Taghirad. Parallel Robots. Mechanics and Control. CRC Press; 1 edition, by Taylor & Francis Group, 2013, 533 p.

Merlet J.-P. Parallel Robots. Springer, 2nd edition, 2006. 394 p.

Зозуля В.А., Осадчий С.І. Огляд методів побудови систем керування механізмом паралельної кінематичної структури на основі платформи Стюарта (гексапод). Автоматизація технологічних і бізнес-процесів. 2019. Т. 11 № 3. С. 23–31. DOI:10.15673/atbp.v11i3.1504

Блохін Л.М., Буриченко М.Ю., Білак Н.В., [та ін.]. Статистична динаміка систем управління: підручник. К.: НАУ. 2014. 300 с.

Александров Є.Є. Автоматичне керування рухомими об’єктами і технологічними процесами: Навч. посібник: у 4 т. Т. 2: Автоматичне керування рухом літальних апаратів/ Є.Є. Александров, Е.П. Козлов, Б.І. Кузнєцов; за заг.ред. Є.Є. Алаксандрова – Харків: НТУ”ХПІ”, 2006. 528 с.

Osadchiy S.I., Zozulya V.A. Combined method for the synthesis of optimal stabilization systems of multidimensional moving objects under stationary random impacts. Automation and Information Sciences. 2013. Vol. 45, Issue 6. P. 25–35.

Kvakernaak H., Sivan R. Linear optimal control systems. New York: John Wiley & Son Inc., 1972. 575 p.

Horn R. A., Johnson C. R. Matrix Analysis. Cambridge University Press (2nd ed.), 2012. 643 p. DOI: 10.1017/CBO9781139020411.

Published

2024-11-26