STUDY OF TECHNICAL DESIGN OPTIMIZATION PROBLEMS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.4.18

Keywords:

technical tasks, design, fuzzy-logical methods, process logic, mathematical algorithm, linguistic evaluation

Abstract

The article studies the issues of optimization of technical design tasks, which is a key element of modern engineering activities and contributes to increasing the efficiency of implementing design solutions, especially in conditions of uncertainty, multi-vector influence of internal and external factors, as well as a dynamically changing environment. It is established that the technological features of management and the need for intellectual support of technical design tasks make it impossible to repeat processes and form unique, unrepeatable conditions for the implementation of projects. The article highlights the main aspects of optimization, including a detailed analysis of modern approaches, methods and tools used in this area, their strengths and weaknesses, as well as opportunities for improving design processes. Particular attention is paid to such methodologies as interval-probabilistic algorithms, fuzzy-logical models and genetic algorithms, which have proven their effectiveness in working with inaccurate and incomplete data, allowing to reduce the impact of measurement errors on the final results. The author substantiates the feasibility of using a multi-method approach to solving optimization problems, which takes into account the complexity of technical systems, their nonlinear nature, as well as the interdependence of many factors that determine the conditions for project implementation. Within the framework of the study, practical algorithms and methodological recommendations have been developed, in particular, an algorithm for supporting decision-making regarding the transfer of part of the tasks to third-party performers. Approaches have been proposed that cover technical and economic, informational and managerial aspects, which ensures increased efficiency of optimization processes. Based on the results obtained, ways of improving the optimization processes of technical design tasks have been proposed, which provide greater flexibility and stability of engineering solutions, meeting the challenges of the modern rapidly changing environment. The results obtained are significant not only from a theoretical point of view, but also have practical value for further use in engineering practice.

References

Marzouk M., Abubakr A. Decisions up port for to wercranese lection with building information models and genetic algorithms. Automation in Construction. 2016. no 61. p. 1–15.

Yashchenko V.A. Neural-like growing network sin the development of general intelligence. Neural-like element (P.I) Mathematical machines and systems. 2022. No 4. P. 15–36.

Безклубенко І. С., Гетун Г. В., Баліна О. І., Буценко Ю. П. Дослідження властивостей множини ефективних значень критеріїв в задачі оптимізації інженерної мережі. Управління розвитком складних систем. 2022. № 51, с. 81–86. DOI: 10.32347/2412-9933.2022.51.81-86

Adibfar A., Costin A., Issa R.R.A. Design Copyright in Architecture, Engineering, and Construction Industry: Review of History, Pitfalls, and Lessons Learned. Journal of legal af fairs and disputere solution in engineering and construction. 2020. 12. 04520032. DOI:10.1061/(ASCE)LA.1943-4170.0000421.

Chernyshev D., Ryzhakov D., Dikiy O., Khomenko O., Petrukha S. Innovative Methodology and Management Tools of Commercial Real Estate. International Journalon Emerging Technologies. 2020. № 11 (5). Р. 283–289.

Pajak K., Omelyanenko V., Makedon V., Shevchenko V., Ovcharenko I. Raising the level of financial security of the enterprise based on the basic risks differentiation. Journal of Security and Sustain ability Issues. 2020. No 10(1). pp. 115–130. https://doi.org/10.9770/jssi.2020.10.1(9).

Смолич Д.В. Інноваційні методи управління проектами. Економічний форум. 2019. № 1. С. 50–53. 10.36910/6765-2308-8559-2019-4-8.

Prasad V., Khare R., Palod N. A new multi-objective evolution ary algorithm for the optimization of water distribution networks. Water Science & Technology Water Supply. 2022.No 22(6). P. 8972–8987. DOI: 10.2166/ws.2022.413.

Yi W., Chi H-L., Wang S. Mathematical programming models for construction site layout problems. Automation in Construction. 2018.Vol. 85. P. 241–248. https://doi.org/10.1016/j.autcon.2017.10.031.

Scibilia A., Pedrocchi N., Fortuna L. Human Control Model Estimationin Physical Human–Machine Interaction: A Survey. Sensors. 2022. № 22(5). Р. 1732. https://doi.org/10.3390/s22051732.

Xu M., Nie X., Li H., Cheng J., Mei Z. Smart construction sites: A promising approach to improving on site HSE management performance. Journal of Building Engineering. 2022.Vol. 49. https://doi.org/10.1016/ j.jobe.2022.104007

Македон В., Михайленко О., Красніков П. Управління розробкою та реалізацією національних і міжнародних проектів у сфері відновлювальної енергетики. Підприємництво та інновації. 2023. №(26). с. 5–13. https://doi.org/10.32782/2415-3583/26.1.

Published

2024-12-30