ARTIFICIAL INTELLIGENCE TOOLS FOR SYSTEMS ANALYSIS

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2024.4.46

Keywords:

artificial intelligence, AI, machine learning, system analysis, data analysis, system analyst, big data, testing

Abstract

The introduction of artificial intelligence (AI) and machine learning tools into data analytics has revolutionized data interpretation, providing unprecedented insights and facilitating data-driven decision-making across sectors. Data systems analysts can use a variety of tools to improve their analysis, decision-making, and risk management processes. The choice of tools depends on the specific needs of the systems analysis, the type of data, and the goals of the analysis. Integrating AI into the activities of data analysts can significantly improve the efficiency and accuracy of their work. The article analyzes the ways in which AI tools can be used in systems analysis, including: data analysis, automation and robotics, data visualization, decision support systems, natural language processing (NLP), predictive analytics and risk analysis, and expert knowledge systems. The paper proposes strategies that will help organizations navigate the complexities of integrating AI and machine learning into systems analysis to improve their analysis, decision-making, and risk management processes. AI tools are systematized and collected into groups, depending on their specifics and in accordance with the scope of possible use in systems analysis. In each group, several modern AI tools for solving specialized tasks are presented and characterized. Such a systematic approach will allow specialists in the field of systems data analysis to quickly navigate the choice of possible tools when solving a specific task and consider possible alternative options for the toolkit. The correct and quick choice of an AI tool is important, as it helps the specialist to quickly achieve the desired result with less effort. The results obtained can be used to optimize the work of specialists of various professions in the field of systems analysis.

References

Aleryani A. Eliciting Client Requirements in Developing Information Systems Using Artificial Intelligence (Opportunities and Challenges). International Journal of Recent Engineering Science. 2024. Vol. 11(3). P. 126-133. DOI: https://doi.org/10.14445/23497157/IJRES-V11I3P115

Ozkaya I. An AI Engineer Versus a Software Engineer. IEEE Software. 2022. Vol. 39, Issue: 6. P. 4-7. DOI: https://doi.org/10.1109/MS.2022.3161756.

Wang Ch., Lee B., Drucker S., Marshall D., Gao J. Data Formulator 2: Iteratively Creating Rich Visualizations with AI. arXiv. 2024. Vol. 2408.16119. DOI: https://doi.org/10.48550/arXiv.2408.16119

Johnson K., Lawrence A. AI/ML in Security Orchestration, Automation and Response: Future Research Directions. Intelligent Automation & Soft Computing. 2021. Vol. 28(2). P. 527-545. DOI: https://doi.org/10.32604/iasc.2021.016240

Abbasi M., Nishat R., Bond C., Graham-Knight B., Lasserre P., Lucet Y., Najjaran H. A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches). arXiv. 2024. Vol. 2407.11043. DOI: https://doi.org/10.48550/arXiv.2407.11043

Gartner Unveils Top Predictions for IT Organizations and Users in 2025 and Beyond. URL: https://www.gartner.com/en/newsroom/press-releases/2024-10-22-gartner-unveils-top-predictions-for-it-organizations-and-users-in-2025-and-beyond

Gartner Predicts AI Software Will Grow To $297 Billion By 2027. URL: https://www.linkedin.com/pulse/gartnerpredicts-ai-software-grow-297-billion-2027-louis-columbus-okpfc

What is AI analytics? URL: https://www.ibm.com/think/topics/ai-analytics

Modern techniques for data cleansing and transformation. URL: https://www.linkedin.com/pulse/moderntechniques-data-cleansing-transformation-gxiaf/

Стрілець М.І., Трофименко О.Г. Стратегії та перспективи розвитку системного аналізу з впровадженням штучного інтелекту. Актуальні питання автоматизації та інформаційних технологій (АТІТ-2024): матер. III всеукр. наук.-практ. конф., 21 листопада 2024р., Кременчук. URL: https://atit.kdu.edu.ua/publ.php

Трофименко, О. Г., Соколов, А. В., Чикунов, П. О., Ахмаметьєва, Г. В., Манаков С. Ю. (2024). Штучний інтелект у військовій кіберсфері. Технології та інжиніринг, 4(21), 85–92. https://doi.org/10.30857/2786-5371.2024.4.8.

Gartner: AI to reshape organizations and workplaces by 2025. URL: https://backendnews.net/gartner-ai-toreshape-organizations-and-workplaces-by-2025/

20 Top Rated Data Analytics Tools Of 2024. URL: https://airbyte.com/top-etl-tools-for-sources/data-analyticstools

Miguel P.G. 23 Best Cloud Service Providers Reviewed For 2024. URL: https://thectoclub.com/tools/best-cloudservice-providers/

Top 24 tools for data analysis and how to decide between them. URL: https://ua.stitchdata.com/resources/dataanalysis-tools/

10 Data Analysis Tools and When to Use Them. Coursera. URL: https://www.coursera.org/articles/data-analysistools

Amazon Kinesis vs Apache Storm: Which Tool is Better for Your Next Project? URL: https://www.projectpro.io/compare/amazon-kinesis-vs-apache-storm

Data quality checks. DataRbot. URL: https://docs.datarobot.com/en/docs/data/analyze-data/quality-check.html

Ransford A. MLOps: A deep dive into TFX, Kubeflow, ZenML, and MLflow. URL: https://medium.com/@ransford.addai/mlops-a-deep-dive-into-tfx-kubeflow-zenml-and-mlflow-847f57c47b03

Published

2024-12-30