STATISTICAL ANALYSIS OF PUBLIC TRANSPORT PASSENGER CONTACTS ON URBAN ROUTES

Authors

DOI:

https://doi.org/10.35546/kntu2078-4481.2025.1.1.14

Keywords:

public transport, passenger contacts, infectious diseases, statistical analysis

Abstract

During the outbreak of the global COVID-19 coronavirus pandemic, urban mass passenger transport was considered one of the factors contributing to the spread of infection among the urban population. Moving in the limited space and volume of public transport cabins, passengers come into contact with each other directly or indirectly through the contact surfaces of cabin elements, which creates favorable conditions for the transmission of the disease from a sick person to a healthy person. In an attempt to reduce the risk of passenger disease, local authorities and transport operators have introduced various restrictions on passenger access to public transport services – from limiting the maximum number of passengers in the cabin to completely stopping passenger services on certain city routes. However, the effectiveness of these measures and their impact on the spread of infection remains unclear. The article is devoted to the statistical analysis of the indicators of passenger contacts among themselves while using the services of urban public transport in order to quantify them for use in passenger disease risk models and probabilistic models of the spread of infections, as well as to substantiate the effectiveness of the introduction of organizational and technological measures for the use of public transport during pandemics and epidemics. Based on the results of the survey of passenger flows on four bus routes of the city of Zaporizhzhia with rolling stock of different passenger capacity, performed by the tabular method, and modeling on their basis the route matrix of inter-stop passenger correspondences, statistical patterns of the dependence of the number of passenger contacts among themselves and the average number of contacts of one passenger during the trip on the volume of transportation on the routes per trip were established. It was established that the random variable of the average number of passenger contacts, attributed to the passenger capacity of the rolling stock, is satisfactorily described by the gamma distribution law, the main statistics and parameters of the gamma distribution of this random variable were obtained.

References

Постанова кабінету міністрів України «Про встановлення карантину та запровадження обмежувальних протиепідемічних заходів з метою запобігання поширенню на території України гострої респіраторної хвороби COVID-19, спричиненої коронавірусом SARS-CoV-2» від 9 грудня 2020 року № 1236 [Електронний ресурс]. URL: https://ips.ligazakon.net/document/KP201236?an=1&ed=2021_08_18 (дата звернення: 16.01.2025).

Mo B., Feng K., Shen Yu, Tam C., Li D., Yin Y., Zhao J. Modeling epidemic spreading through public transit using time-varying encounter network. Transportation Research Part C: Emerging Technologies, January 2021, Volume 122:102893. doi: https://doi.org/10.1016/j.trc.2020.102893

Kumar P., Khani A., Lind E., Levin J. Estimation and Mitigation of Epidemic Risk on a Public Transit Route using Automatic Passenger Count Data. Transportation Research Record Journal, February 2021, Vol. 2675(6). doi: https://doi.org/10.1177/0361198120985133

Zhuang Y., Chen Y. Risk management of Covid-19 epidemic spread in urban rail transit based on SEIR model. Sixth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2021), 2021, Chongqing, China. doi: https://doi.org/10.1117/12.2624679

COVID-19 Coronavirus Pandemic. World statistics and information portal. [Electronic resource]. URL: https://www.worldometers.info/coronavirus/ (accessed: 22.01.2025).

Troko J., Myles P., Gibson J., Hashim A., Enstone J., Kingdon S., Packham C., Amin S., Hayward A., Van-Tam J. Is public transport a risk factor for acute respiratory infection? BMC Infectious Diseases 11, article number: 16 (2011). doi: https://doi.org/10.1186/1471-2334-11-16

Ku D., Yeon C., Lee S., Lee K., Hwang K., Li Y. C., Wong S. C. Safe traveling in public transport amid COVID-19. Science Advances, October 2021, Vol. 7, Issue 43. doi: https://doi.org/10.1126/sciadv.abg3691

Qian X., Ukkusuri S. V. Modeling the spread of infectious disease in urban areas with travel contagion. Cornell University, May 2020, arXiv: 2005.04583. doi:https://doi.org/10.48550/arXiv.2005.04583

Tapiador L., Gomez J., Vassallo J. M. Exploring the relationship between public transport use and COVID-19 infection: A survey data analysis in Madrid Region. Sustainable Cities and Society, May 2024, Volume 104:105279. doi: https://doi.org/10.1016/j.scs.2024.105279

Кузькін О. Ф., Райда І. М., Мартинов Д. О. Аналіз мереж контактів пасажирів громадського транспорту для різних типів міських маршрутів – Транспортні технології та безпека дорожнього руху. Збірник тез доповідей П’ятої всеукраїнської науково-практичної конференції 12–13 березня 2024 р., Запоріжжя [Електронний ресурс] – Запоріжжя : НУ «Запорізька політехніка», 2024, 27–29 с. URL: https://eir.zp.edu.ua/items/001ab204-667a-4205-b4f5-072c4182d0e0

Ігнатенко О. С., Марунич В. С. Організація автобусних перевезень у містах. Навчальний посібник. Український транспортний університет. К. : [б.в.], 1998. 193 с.

Лащених О. А., Кузькін О. Ф., Грицай С. В. Імовірнісні і статистико-експериментальні методи аналізу транспортних процесів і систем. Навчальний посібник. Запоріжжя, ЗНТУ, 2012. 420 с.

Published

2025-02-25