SCALAR CONTROL METHOD OF ASYNCHRONOUS ELECTRIC DRIVES IN WATER SUPPLY SYSTEM
DOI:
https://doi.org/10.35546/kntu2078-4481.2025.1.1.26Keywords:
asynchronous motor, speed control, pumping equipment, scalar method, frequency converter, transistors, MOSFETs, insulated gate bipolar transistors, semiconductor elements: thyristors (single-ended, controlled), MatLab Simulink modeling, sensors, controller, automatic control, monitoring the technical condition of the pump electric drive, maintenanceAbstract
The study is aimed at improving the efficiency of the electric drive of the water supply pumping system in production conditions. The purpose of the work is to optimize energy consumption, increase reliability and ensure stable pressure in the water supply network using modern electric drive technologies. An automated control system is considered, consisting of an asynchronous electric motor, pump, frequency converter, controller, sensors, semiconductor elements (thyristors and MOS transistors) and a control panel. The use of frequency converters allows you to change the pump rotation speed in accordance with the need for water, which reduces electricity consumption and extends the service life of the equipment. The research methodology is based on modeling the operation of the electric drive of the pumping unit in the MatLab Simulink environment, which demonstrates the advantages of using modern technologies and automation elements to achieve high energy efficiency and optimize electricity costs. The introduction of advanced power semiconductor components in combination with frequency converters allows you to smoothly adjust the engine speed, significantly reducing energy consumption and preventing overloads. The results show that the use of automated pressure and water level control systems adds another level of reliability and energy efficiency. The system ensures the stability of water supply even under variable loads, preventing accidents and equipment wear. Frequency control significantly reduces hydraulic losses, reduces noise and vibration, improving the performance of the pumping system. The originality of the research lies in the use of a scalar method of controlling the operation of the electric drive, which allows simplifying control algorithms and improving the energy efficiency of the system. The practical value of the work lies in the possibility of implementing the developed automated control system in real pumping stations, which will help reduce energy consumption and increase the reliability of their operation. The use of an electric drive in water supply systems provides automatic regulation of the operation of pumping equipment, increasing energy efficiency, reducing operating costs and extending the service life of the equipment due to smooth start-up, optimal loading and integration with relay protection to prevent emergency situations. To ensure uninterrupted operation of the equipment, it is necessary to regularly monitor the technical condition of the pump electric drive and its maintenance in accordance with established norms and standards.
References
Shankar, V. K. A., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495–513. https://doi.org/10.1016/j.apenergy.2016.08.070
Augustyn, T. (2012). Energy efficiency and savings in pumping systems – The holistic approach. In Proceedings of the Southern African Energy Efficiency Convention (SAEEC). https://doi.org/10.1109/saeec.2012.6408587
Moreno, M., Carrión, P., Planells, P., Álvarez, J. F. O., & Tarjuelo, J. (2007). Measurement and improvement of the energy efficiency at pumping stations. Biosystems Engineering, 98(4), 479–486. https://doi.org/10.1016/j.biosystemseng.2007.09.005.
Moshnoriz, M., Babiy, S., Payanok, A. (2021). Improving the efficiency of distributed water supply systems by means of an adjustable electric drive. Scientific Horizons. Vol. 24, No. 5. P. 19–34.
Грабко, В. В., Мошноріз М. М. (2011). Метод та засоби оптимізації роботи електроприводів насосної станції водопостачання: монографія. Вінниця : ВНТУ. 138 с.
Гарасьова, Н. Ю., Величко, Т. В. (2014). Оцінка ефективності роботи регульованого електроприводу насосу при змінному графіку водоспоживання. Наукові записки, вип.15. С. 86–88.
Мошноріз, М. М. (2009). Синтез структури пристрою керування запуском двигуна великої потужності. Вісник Кременчуцького державного політехнічного університету імені Михайла Остроградського. Випуск 4(57), Ч. 1. С. 36–39.
Мошноріз, М., Грабко, В. (2008). Підвищення ефективності керування насосними агрегатами станції водопостачання. Вісник Кременчуцького державного політехнічного університету імені Михайла Остроградського. Випуск 3(50). Ч. 1. С. 145–148.
Попович, М. Г., Печеник, М. В., Кіселичник, О. І., Ковальчук О. В. (2002). Особливості організації екстремальних енергозберігаючих систем при різних методах керування асинхронних електроприводів. Вісник Кременчуцького державного політехнічного університету. Вип. 1(12). С. 129–132.
Xu, X., Zhou, H., & Mao, L. (2011). Research on intelligent frequency conversion control system of pumping unit with auto-adapted function. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. https://doi.org/10.1109/emeit.2011.6023557
Bolognani, S., & Zampieri, S. (2013). A distributed control strategy for reactive power compensation in smart microgrids. IEEE Transactions on Automatic Control, 58(11), 2818-2833. https://doi.org/10.1109/tac.2013.2270317
Давидов, О. Ю., Бялобржеський, О. В. (2010). Аналіз засобів компенсації реактивної потужності в електротехнічних системах. Діагностика в електромеханічних і енергетичних системах. Вісник КрНУ ім. М. Остроградського. Вип. 3/2010 (62). Ч. 1. C.132–136.
Zieliński, D., Stefańczak, B., & Jędrys, K. (2022). Phase-Independent Reactive Power Compensation Based on Four-Wire Power Converter in the Presence of Angular Asymmetry between Voltage Vectors. Energies, 15(2), 497. https://doi.org/10.3390/en15020497






